Do you want to publish a course? Click here

UV Sensitivity of the Axion Mass from Instantons in Partially Broken Gauge Groups

66   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We examine the contribution of small instantons to the axion mass in various UV completions of QCD. We show that the reason behind the potential dominance of such contributions is the non-trivial embedding of QCD into the UV theory. The effects from instantons in the partially broken gauge group appear as fractional instanton corrections in the effective theory. These will exhibit unusual dependences on the various scales in the problem whenever the index of embedding is non-trivial. We present a full one-instanton calculation of the axion mass in the simplest product group models, carefully keeping track of numerical prefactors. Rather than using a t Hooft operator approximation we directly evaluate the contributions to the vacuum bubble, automatically capturing the effects of closing up external fermion lines with Higgs loops. This approach is manifestly finite and removes the uncertainty associated with introducing a cutoff scale for the Higgs loops. We verify that the small instantons may dominate over the QCD contribution for very high breaking scales and at least three group factors.

rate research

Read More

We calculate a new contribution to the axion mass that arises from gluons propagating in a 5th dimension at high energies. By uplifting the 4D instanton solution to five dimensions, the positive frequency modes of the Kaluza-Klein states generate a power-law term in the effective action that inversely grows with the instanton size. This causes 5D small instantons to enhance the axion mass in a way that does not spoil the axion solution to the strong CP problem. Moreover this enhancement can be much larger than the usual QCD contribution from large instantons, although it requires the 5D gauge theory to be near the non-perturbative limit. Thus our result suggests that the mass range of axions (or axion-like particles), which is important for ongoing experimental searches, can depend sensitively on the UV modification of QCD.
We show that axions interacting with abelian gauge fields obtain a potential from loops of magnetic monopoles. This is a consequence of the Witten effect: the axion field causes the monopoles to acquire an electric charge and alters their energy spectrum. The axion potential can also be understood as a type of instanton effect due to a Euclidean monopole worldline winding around its dyon collective coordinate. We calculate this effect, which has features in common with both nonabelian instantons and Euclidean brane instantons. To provide consistency checks, we argue that this axion potential vanishes in the presence of a massless charged fermion and that it is robust against the presence of higher-derivative corrections in the effective Lagrangian. Finally, as a first step toward connecting with particle phenomenology and cosmology, we discuss the regime in which this potential is important in determining the dark matter relic abundance in a hidden sector containing an abelian gauge group, monopoles, and axions.
We study axion effective field theories (EFTs), with a focus on axion couplings to massive chiral gauge fields. We investigate the EFT interactions that participate in processes with an axion and two gauge bosons, and we show that, when massive chiral gauge fields are present, such interactions do not entirely originate from the usual anomalous EFT terms. We illustrate this both at the EFT level and by matching to UV-complete theories. In order to assess the consistency of the Peccei--Quinn (PQ) anomaly matching, it is useful to introduce an auxiliary, non-dynamical gauge field associated to the PQ symmetry. When applied to the case of the Standard Model (SM) electroweak sector, our results imply that anomaly-based sum rules between EFT interactions are violated when chiral matter is integrated out, which constitutes a smoking gun of the latter. As an illustration, we study a UV-complete chiral extension of the SM, containing an axion arising from an extended Higgs sector and heavy fermionic matter that obtains most of its mass by coupling to the Higgs doublets. We assess the viability of such a SM extension through electroweak precision tests, bounds on Higgs rates and direct searches for heavy charged matter. At energies below the mass of the new chiral fermions, the model matches onto an EFT where the electroweak gauge symmetry is non-linearly realised.
We initiate the study of gravitational wave (GW) signals from first-order phase transitions in supersymmetry-breaking hidden sectors. Such phase transitions often occur along a pseudo-flat direction universally related to supersymmetry (SUSY) breaking in hidden sectors that spontaneously break $R$-symmetry. The potential along this pseudo-flat direction imbues the phase transition with a number of novel properties, including a nucleation temperature well below the scale of heavy states (such that the temperature dependence is captured by the low-temperature expansion) and significant friction induced by the same heavy states as they pass through bubble walls. In low-energy SUSY-breaking hidden sectors, the frequency of the GW signal arising from such a phase transition is guaranteed to lie within the reach of future interferometers given existing cosmological constraints on the gravitino abundance. Once a mediation scheme is specified, the frequency of the GW peak correlates with the superpartner spectrum. Current bounds on supersymmetry are compatible with GW signals at future interferometers, while the observation of a GW signal from a SUSY-breaking hidden sector would imply superpartners within reach of future colliders.
218 - M. Bill`o , M. Frau , F. Fucito 2016
We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the prepotential in terms of (quasi)-modular forms, thus resumming the instanton contributions. These results can be checked against the microscopic multi-instanton calculus in the case of classical algebras, but are valid also for the exceptional E6, E7, E8, F4 and G2 algebras, where direct computations are not available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا