Do you want to publish a course? Click here

Detailed Characterization of Low Activity Comet 49P/Arend-Rigaux

336   0   0.0 ( 0 )
 Added by Laurie Chu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Comet 49P/Arend-Rigaux is a well known low-activity Jupiter Family comet. Despite the low activity, we have witnessed outgassing activity in 1992, 2004, and 2012. In 2012 a broad tail-like feature (PA$sim270^circ, sim2.3times10^5$ km) and a narrow jet-like feature (PA$sim180^circ, sim9.3times10^4$ km) were seen simultaneously. Using Finson-Probstein (FP) dust dynamical models we determine: grain sizes released in each event; duration of activity; when activity peaked; and velocity of the dust particles, allowing us to make comparisons between the events. We find that the tail feature in 2012 is similar to the tail in 1992 with large grains (40-4000 $mu$m) peaking in activity near perihelion with a long outgassing duration greater than 150 days. The jet feature from 2012, however, is more similar to the 2004 event which we model with small grains (1-8 $mu$m) with a short duration of activity ($sim$1 month). The main difference between these two features is that the 2004 event occurs prior to perihelion, while the 2012 event is post-perihelion. We use the grain sizes from the FP models to constrain ice sublimation models. Between 1985 and 2018 we cover 6 apparitions with 26 nights of our own observations plus data from the literature and the Minor Planet Center, which together, allow us to model the heliocentric light curve. We find that the models are consistent with H$_2$O ice sublimation as the volatile responsible for driving activity over most of the active phases and a combination of H$_2$O and CO$_2$ ices are responsible for driving activity near perihelion. We measure the fractional active area over time for H$_2$O and discover that the activity decreases from an average active area of $sim3%$ to $sim0.2%$. This secular decrease in activity implies that the comet is becoming depleted of volatiles and is in the process of transitioning to a dormant or dead state.



rate research

Read More

Comet 49P/ Arend-Rigaux, thought to be a low activity comet since the 1980s was found to be active in its recent apparitions. Recent analysis of the data obtained from Spitzer observation of the comet in 2006 compared with laboratory spectra has revealed amorphous water ice on the surface. In addition, in 2012 a jet was found to appear during its subsequent perihelion passage as witnessed during an observation carried out on 26th March 2012 using the PRL telescope at Mt. Abu. This confirms recent activity of Comet 49P/Arend-Rigaux due to the volatile subsurface materials exposed after several passages close to the Sun. Our result confirms the subsurface ices on cometary nuclei and insists for more observations for a better understanding.
We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volatile ices. To derive the ejected aggregate sizes, we developed a model based on the assumption that the entire heat absorbed by the surface is consumed by the sublimation process of one volatile species. The calculations were performed for the three most prominent volatile materials in comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of the dust aggregates able to escape from the nucleus into space widens when the comet approaches the Sun and narrows with increasing heliocentric distance, because the tensile strength of the aggregates decreases with increasing aggregate size. The activity of CO ice in comparison to H_20 ice is capable to detach aggregates smaller by approximately one order of magnitude from the surface. As a result of the higher sublimation rate of CO ice, larger aggregates are additionally able to escape from the gravity field of the nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7 AU. Furthermore, the model predicts the release of decimeter-sized aggregates (trail particles) close to the heliocentric distance at which the gas-driven dust activity vanishes. However, the gas-driven dust activity cannot explain the presence of particles smaller than ~1 mm in the coma because the high tensile strength required to detach these particles from the surface cannot be provided by evaporation of volatile ices. These smaller particles can be produced for instance by spin-up and centrifugal mass loss of ejected larger aggregates.
Comet C/2017 K2 (PANSTARRS) was discovered by the Pan-STARRS1 (PS1) Survey on 2017 May 21 at a distance 16.09 au from the Sun, the second most distant discovery of an active comet. Pre-discovery images in the PS1 archive back to 2014 and additional deep CFHT images between 2013 May 10-13 showed the comet to be active at 23.75 au. We derive an upper limit to the nucleus radius of $R_N$=80 km, assuming a 4% albedo. The spectral reflectivity of the comet surface is similar to fresh regions seen on comet 67P/Churyumov-Gerasimenko using the $Rosetta$ OSIRIS camera. Pre-discovery photometry combined with new data obtained with Megacam on the CFHT show that the activity is consistent with CO-ice sublimation and inconsistent with CO$_2$-ice sublimation. The ice sublimation models were run out to perihelion in 2022 at 1.8 au to predict the CO production rates, assuming that the outgassing area does not change. Assuming a canonical 4% active surface area for water-ice sublimation, we present production rate ratios, $Q_{rm CO}$/$Q_{rm H2O}$, for a range of nucleus sizes. Comparing these results with other CO-rich comets we derive a lower limit to the nucleus radius of $sim$14 km. We present predictions for $Q_{rm CO}$ at a range of distances that will be useful for planning observations with JWST and large ground-based facilities.
Comet 2I/Borisov, the first unambiguous interstellar comet ever found, was discovered in August 2019 at $sim3$ au from the Sun on its inbound leg. No pre-discovery detection beyond 3 au has yet been reported, mostly due to the comets proximity to the Sun as seen from the Earth. Here we present a search for pre-discovery detections of comet Borisov using images taken by the Catalina Sky Survey (CSS), Pan-STARRS and Zwicky Transient Facility (ZTF), with a further comprehensive follow-up campaign being presented in citet{Bolin2019}. We identified comet Borisov in ZTF images taken in May 2019 and use these data to update its orbit. This allowed us to identify the comet in images acquired as far back as December 2018, when it was 7.8 au from the Sun. The comet was not detected in November 2018 when it was 8.6 au from the Sun, possibly implying an onset of activity around this time. This suggests that the activity of the comet is either driven by a more volatile species other than H$_2$O, such as CO or CO$_2$, or by exothermic crystallization of amorphous ice. We derive the radius of the nucleus to be $<7$ km using the non-detection in November 2018, and estimate an area of $sim0.5$---$10 mathrm{km^2}$ has been active between December 2018 and September 2019, though this number is model-dependent and is highly uncertain. The behavior of comet Borisov during its inbound leg is observationally consistent with dynamically new comets observed in our solar system, suggesting some similarities between the two.
We used the UltraViolet-Optical Telescope on board Swift to observe the dynamically young comet C/2009 P1 (Garradd) from a heliocentric distance of 3.5 AU pre-perihelion until 4.0 AU outbound. At 3.5 AU pre-perihelion, comet Garradd had one of the highest dust-to-gas ratios ever observed, matched only by comet Hale-Bopp. The evolving morphology of the dust in its coma suggests an outburst that ended around 2.2 AU pre-perihelion. Comparing slit-based measurements and observations acquired with larger fields of view indicated that between 3 AU and 2 AU pre-perihelion a significant extended source started producing water in the coma. We demonstrate that this source, which could be due to icy grains, disappeared quickly around perihelion. Water production by the nucleus may be attributed to a constantly active source of at least 75 km$^2$, estimated to be more than 20 percent of the surface. Based on our measurements, the comet lost $4x10^{11}$ kg of ice and dust during this apparition, corresponding to at most a few meters of its surface.Even though this was likely not Garradds first passage through the inner solar system, the activity of the comet was complex and changed significantly during the time it was observed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا