Do you want to publish a course? Click here

Proton-synchrotron as the radiation mechanism of the prompt emission of GRBs?

196   0   0.0 ( 0 )
 Added by Gabriele Ghisellini
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the new surprising observational results that indicate quite convincingly that the prompt emission of Gamma-Ray Bursts (GRBs) is due to synchrotron radiation produced by a particle distribution that has a low energy cut-off. The evidence of this is provided by the low energy part of the spectrum of the prompt emission, that shows the characteristic F(nu) propto nu^(1/3) shape followed by F(nu) propto nu^(-1/2) up to the peak frequency. This implies that although the emitting particles are in fast cooling, they do not cool completely. This poses a severe challenge to the basic ideas about how and where the emission is produced, because the incomplete cooling requires a small value of the magnetic field, to limit synchrotron cooling, and a large emitting region, to limit the self-Compton cooling, even considering Klein-Nishina scattering effects. Some new and fundamental ingredient is required for understanding the GRBs prompt emission. We propose proton-synchrotron as a promising mechanism to solve the incomplete cooling puzzle.

rate research

Read More

A small fraction of GRBs with available data down to soft X-rays ($sim0.5$ keV) have been shown to feature a spectral break in the low-energy part ($sim1-10$ keV) of their prompt emission spectrum. The overall spectral shape is consistent with optically thin synchrotron emission from a population of particles that have cooled on a timescale comparable to the dynamic time to energies that are still much higher than their rest mass energy (marginally fast cooling regime). We consider a hadronic scenario and investigate if the prompt emission of these GRBs can originate from relativistic protons that radiate synchrotron in the marginally fast cooling regime. Using semi-analytical methods, we derive the source parameters, such as magnetic field strength and proton luminosity, and calculate the high-energy neutrino emission expected in this scenario. We also investigate how the emission of secondary pairs produced by photopion interactions and $gammagamma$ pair production affect the broadband photon spectrum. We support our findings with detailed numerical calculations. Strong modification of the photon spectrum below the break energy due to the synchrotron emission of secondary pairs is found, unless the bulk Lorentz factor is very large ($Gamma gtrsim 10^3$). Moreover, this scenario predicts unreasonably high Poynting luminosities because of the strong magnetic fields ($10^6-10^7$ G) that are necessary for the incomplete proton cooling. Our results strongly disfavour marginally fast cooling protons as an explanation of the low-energy spectral break in the prompt GRB spectra.
Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies $gtrsim10$ keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain because of the apparent inconsistency with synchrotron radiation, which is the most obvious candidate, and the resulting need for considering less straightforward scenarios. The inclusion of data down to soft X-rays ($sim$ 0.5 keV), which are available only in a small fraction of GRBs, has firmly established the common presence of a spectral break in the low-energy part of prompt spectra, and the consistency of the overall spectral shape with synchrotron radiation in the moderately fast-cooling regime, the low-energy break being identified with the cooling frequency. In this work we further extend the range of investigation down to the optical band. In particular, we test the synchrotron interpretation by directly fitting a theoretically derived synchrotron spectrum and making use of optical to gamma-ray data. Secondly, we test an alternative model that considers the presence of a black-body component at $sim$keV energies, in addition to a non-thermal component that is responsible for the emission at the spectral peak (100 keV-1 MeV). We find that synchrotron radiation provides a good description of the broadband data, while models composed of a thermal and a non-thermal component require the introduction of a low-energy break in the non-thermal component in order to be consistent with optical observations. Motivated by the good quality of the synchrotron fits, we explore the physical parameter space of the emitting region. In a basic prompt emission scenario we find quite contrived solutions for the magnetic field strength (5 G $<B^prime<40$ G) and for the location of the region where the radiation is produced ($R_gamma>10^{16}$ cm).
72 - Kuan Liu , Da-Bin Lin , Jing Li 2021
Growing evidence indicates that the synchrotron radiation mechanism may be responsible for the prompt emission of gamma-ray bursts (GRBs). In the synchrotron radiation scenario, the electron energy spectrum of the prompt emission is diverse in theoretical works and has not been estimated from observations in a general way (i.e., without specifying a certain physical model for the electron spectrum). In this paper, we creatively propose a method to directly estimate the electron spectrum for the prompt emission, without specifying a certain physical model for the electron spectrum in the synchrotron radiation scenario. In this method, an empirical function (i.e., a four-order Bezier curve jointed with a linear function at high-energy) is applied to describe the electron spectrum in log-log coordinate. It is found that our empirical function can well mimic the electron spectra obtained in many numerical calculations or simulations. Then, our method can figure out the electron spectrum for the prompt emission without specifying a model. By employing our method on observations, taking GRB 180720B and GRB 160509A as examples, it is found that the obtained electron spectra are generally different from that in the standard fast-cooling scenario and even a broken power law. Moreover, the morphology of electron spectra in its low-energy regime varies with time in a burst and even in a pulse. Our proposed method provides a valuable way to confront the synchrotron radiation mechanism with observations.
After more than 40 years from their discovery, the long-lasting tension between predictions and observations of GRBs prompt emission spectra starts to be solved. We found that the observed spectra can be produced by the synchrotron process, if the emitting particles do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs spectra with prompt observations down to 0.5 keV (Oganesyan et al. 2017, 2018), characterized by an additional low-energy break. In order to search for this break at higher energies, we analysed the 10 long and 10 short brightest GRBs detected by the Fermi satellite in over 10 years of activity. We found that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and the photon indices below and above that break are remarkably consistent with the values predicted by the synchrotron spectrum (-2/3 and -3/2, respectively). None of the ten short GRBs analysed shows a break, but the low energy spectral slope is consistent with -2/3. Within the framework of the GRB standard model, these results imply a very low magnetic field in the emission region, at odds with expectations. I also present the spectral evolution of GRB 190114C, the first GRB detected with high significance by the MAGIC Telescopes, which shows the compresence (in the keV-MeV energy range) of the prompt and of the afterglow emission, the latter rising and dominating the high energy part of the spectral energy range.
195 - F. Daigne 2010
(abridged)Prompt GRB emission is often interpreted as synchrotron radiation from high-energy electrons accelerated in internal shocks. Fast synchrotron cooling predicts that the photon index below the spectral peak is alpha=-3/2. This differs significantly from the observed median value alpha approx -1. We quantify the influence of inverse Compton and adiabatic cooling on alpha to understand whether these processes can reconcile the observations with a synchrotron origin. We use a time-dependent code that follows both the shock dynamics and electron energy losses. We investigate the dependence of alpha on the parameters of the model. Slopes between -3/2 and -1 are reached when electrons suffer IC losses in the Klein-Nishina regime. This does not necessarily imply a strong IC component in the Fermi/LAT range because scatterings are only moderately efficient. Steep slopes require that a large fraction (10-30%) of the dissipated energy is given to a small fraction (<~1%) of the electrons and that the magnetic energy density fraction remains low (<~ 0.1%). Values of alpha up to -2/3 can be obtained with relatively high radiative efficiencies (>50%) when adiabatic cooling is comparable with radiative cooling (marginally fast cooling). This requires collisions at small radii and/or with low magnetic fields. Amending the standard fast cooling scenario to account for IC cooling naturally leads to alpha up to -1. Marginally fast cooling may also account for alpha up to -2/3, although the conditions required are more difficult to reach. About 20% of GRBs show spectra with slopes alpha>-2/3. Other effects, not investigated here, such as a thermal component in the electron distribution or pair production by HE photons may further affect alpha. Still, the majority of observed GRB prompt spectra can be reconciled with a synchrotron origin, constraining the microphysics of mildly relativistic internal shocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا