Do you want to publish a course? Click here

Unraveling the degradation mechanism in FIrpic based Blue OLEDs: II. Trap and detect molecules at the interfaces

145   0   0.0 ( 0 )
 Added by Davide Ceresoli
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The impact of organic light emitting diodes (OLEDs) in modern life is witnessed by their wide employment in full-color, energy-saving, flat panel displays and smart-screens; a bright future is likewise expected in the field of solid state lighting. Cyclometalated iridium complexes are the most used phosphorescent emitters in OLEDs due to their widely tunable photophysical properties and their versatile synthesis. Blue-emitting OLEDs, suffer from intrinsic instability issues hampering their long term stability. Backed by computational studies, in this work we studied the sky-blue emitter FIrpic in both ex-situ and in-situ degradation experiments combining complementary, mutually independent, experiments including chemical metathesis reactions, in liquid phase and solid state, thermal and spectroscopic studies and LC-MS investigations. We developed a straightforward protocol to evaluate the degradation pathways in iridium complexes, finding that FIrpic degrades through the loss of the picolinate ancillary ligand. The resulting iridium fragment was than efficiently trapped in-situ as BPhen derivative 1. This process is found to be well mirrored when a suitably engineered, FIrpic-based, OLED is operated and aged. In this paper we (i) describe how it is possible to effectively study OLED materials with a small set of readily accessible experiments and (ii) evidence the central role of host matrix in trapping experiments.



rate research

Read More

We report a detailed ab-initio study of the of the microscopic degradation mechanism of FIrpic, a popular blue emitter in OLED devices. We simulate the emph{operando} conditions of FIrpic by adding an electron-hole pair (exciton) to the system. We perform both static calculations with the TDDFT framework and we also simulate the evolution of the system at finite temperature via Car-Parrinello molecular dynamics. We found triplet excitons are very effective in reducing the Ir-N bond breaking barrier of the picolinate moiety. After the first bond breaking, the two oxygen of picolinate swap their position and FIrpic can either remain stable in an open configuration, or loose a picolinate fragment, which at a later stage can evolve a CO$_2$ molecule. Our method can be applied to other light emitting Ir-complexes in order to quickly estimate their stability in OLED devices. In Paper~II we complement our theoretical study with a parallel experimental investigation of the key degradation steps of FIrpic in an aged device.
The paper presents the results of measurements of XPS valence band spectra of SiO2/MAPbI3 hybrid perovskites subjected to irradiation with visible light and annealing at an exposure of 0-1000 hours. It is found from XPS survey spectra that in both cases (irradiation and annealing) a decrease in the I:Pb ratio is observed with aging time, which unambiguously indicates PbI2 phase separation as a photo and thermal product of degradation. The comparison of the XPS valence band spectra of irradiated and annealed perovskites with density functional theory calculations of the MAPbI3 and PbI2 compounds have shown a systematic decrease in the contribution of I 5p-states and allowed us to determine the threshold for degradation, which is 500 hours for light irradiation and 200 hours for annealing.
181 - Yu Zhu , Xinrui Yang , Famin Yu 2021
The low degradability of common polymers composed of light elements, results in a serious impact on the environment, which has become an urgent problem to be solved. As the reverse process of monomer polymerization, what deviates degradation from the idealized sequential depolymerization process, thereby bringing strange degradation products or even hindering further degradation? This is a key issue at the atomic level that must be addressed. Herein, we reveal that hydrogen atom transfer (HAT) during degradation, which is usually attributed to the thermal effect, unexpectedly exhibits a strong high-temperature tunnelling effect. This gives a possible answer to the above question. High-precision first-principles calculations show that, in various possible HAT pathways, lower energy barrier and stronger tunnelling effect make the HAT reaction related to the active end of the polymer occur more easily. In particular, although the energy barrier of the HAT reaction is only of 0.01 magnitude different from depolymerization, the tunnelling probability of the former can be 14~32 orders of magnitude greater than that of the latter. Furthermore, chain scission following HAT will lead to a variety of products other than monomers. Our work highlights that quantum tunnelling may be an important source of uncertainty in degradation and will provide a direction for regulating the polymer degradation process.
62 - Armando Genco 2017
The generation and control of exotic phenomena in organic electroluminescent microcavities, such as polariton lasing and non-linear optical effects, operating in strong and ultra-strong coupling regimes, is still a great challenge. The main obstacles originate from the small number of molecular classes investigated as well as from the absence of an efficient strategy aiming at the maximization of polariton states population. Here we report on bright polariton organic light emitting diodes made of a coumarin fluorescent dye emitting layer, working in the ultra-strong coupling regime up to a coupling strength of 33%. Owing to a high radiative decay emission, a large Stokes shift and a fine cavity-exciton tuning, the radiative pumping mechanism of polariton states has been fully optimized, leading a large portion (25%) of the emissive electrically pumped excitons to be converted in polariton emission. The resulting polariton OLEDs showed electro-optical performances up to 0.2% of external quantum efficiency and 700 cd/m2 of luminance, corresponding to the highest values reported so far for this class of devices. Our work gives clear indications for an effective exploitation of organic polariton dynamics towards the development of novel quantum optoelectronic devices.
Methylene blue (MB) is often used in textile industries and is actively present in the wastewater runs-off. Recently, mediated electrochemical oxidation (MEO) offers a fast, reliable and promising results for environmental remediation. Thus, we aimed to evaluate the electro-degradation potential of MB by MEO using Ce(IV) ionic mediator. Furthermore, we also observed the influence of addition Ag(I) ion catalyst in MEO for degradation of MB. The electro-degradation of MB was evaluated by cyclic voltammetry technique and was confirmed by UV-Vis spectrophotometry, high performance liquid chromatography (HPLC) analysis and back-titration analysis. The results showed that in the absence of Ag(I) ion catalyst, about 89 % of MB was decolorized within 30 minutes. When 2 mM of Ag(I) ion catalyst was applied, the electro-degradation of MB was increased to maximum value of 100%. The UV-Vis spectrum confirmed the electro-degradation of MB as suggested by decreased maximum absorbance value at {lambda} 668 nm from 2.125 to 0.059. The HPLC analysis showed the formation of five new peaks at retention time of 1.331, 1.495, 1.757, 1.908 and 2.017 minutes, confirming the electro-degradation of MB. The back-titration analysis showed about 52.9% of CO2 was produced during electro-degradation of MB by MEO. More importantly, more than 97% of Ce(IV) ionic mediator were recovered in our investigation. Our results reveal the potential of MEO using Ce(IV) ionic mediator to improve the wastewater runs-off quality from textile as well as other industries containing methylene blue.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا