Do you want to publish a course? Click here

NaCo polarimetric observations of Sz 91 transitional disk: a remarkable case of dust filtering

219   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present polarized light observations of the transitional disk around Sz 91 acquired with VLT/NaCo at $H$ (1.7$mu$m) and $K_s$ (2.2$mu$m) bands. We resolve the disk and detect polarized emission up to $sim$0.5 ($sim$80 au) along with a central cavity at both bands. We computed a radiative transfer model that accounts for the main characteristics of the polarized observations. We found that the emission is best explained by small, porous grains distributed in a disk with a $sim$45 au cavity. Previous ALMA observations have revealed a large sub-mm cavity ($sim$83 au) and extended gas emission from the innermost (<16 au) regions up to almost 400 au from the star. Dynamical clearing by multiple low-mass planets arises as the most probable mechanism for the origin of Sz 91s peculiar structure. Using new $L$ band ADI observations we can rule out companions more massive than $M_p$ $geq$ 8 $M_mathrm{Jup}$ beyond 45 au assuming hot-start models. The disk is clearly asymmetric in polarized light along the minor axis, with the north side brighter than the south side. Differences in position angle between the disk observed at sub-mm wavelengths with ALMA and our NaCo observations were found. This suggests that the disk around Sz 91 could be highly structured. Higher signal-to-noise near-IR and sub-mm observations are needed to confirm the existence of such structures and to improve the current understanding in the origin of transitional disks.



rate research

Read More

We report $0.14$ resolution observations of the dust continuum at band 7, and the CO(3--2) and HCO$^{+}$(4--3) line emissions toward the transitional disk around Sz 91 with Atacama Large Millimeter/submillimeter Array (ALMA). The dust disk appears to be an axisymmetric ring, peaking a radius of $sim$95~au from a Gaussian fit. The Gaussian fit widths of the dust ring are 24.6 and 23.7~au for the major and the minor axes, respectively, indicating that the dust ring is not geometrically thin. The gas disk extends out to $sim$320~au and is also detected in the inner hole of the dust ring. A twin-line pattern is found in the channel maps of CO, which can be interpreted as the emission from the front and rear of the flared gas disk. We perform the radiative transfer calculations using RADMC-3D, to check whether the twin-line pattern can be reproduced under the assumption that the flared gas disk has a power-law form for the column density and $T_mathrm{gas}=T_mathrm{dust}$. The thermal Monte Carlo calculation in RADMC-3D shows that the disk temperature has a gradient along the vertical direction beyond the dust ring, as it blocks the stellar radiation, and thus the twin-line pattern can be naturally explained by the flared gas disk in combination with the dust ring. In addition, no significant depletion of the CO molecules in the cold midplane achieves a reasonable agreement with the observed twin-line pattern. This result indicates that the CO emission from the rear surface must be heavily absorbed in the cold midplane.
One of the most important questions in the field of planet formation is how mm-cm sized dust particles overcome the radial drift and fragmentation barriers to form kilometer-sized planetesimals. ALMA observations of protoplanetary disks, in particular transition disks or disks with clear signs of substructures, can provide new constraints on theories of grain growth and planetesimal formation and therefore represent one possibility to progress on this issue. We here present ALMA band 4 (2.1 mm) observations of the transition disk system Sz 91 and combine them with previously obtained band 6 (1.3 mm) and 7 (0.9 mm) observations. Sz 91 with its well defined mm-ring, more extended gas disk, and evidence of smaller dust particles close to the star, is a clear case of dust filtering and the accumulation of mm sized particles in a gas pressure bump. We computed the spectral index (nearly constant at $sim$3.34), optical depth (marginally optically thick), and maximum grain size ($sim,0.61$ mm) in the dust ring from the multi-wavelength ALMA observations and compared the results with recently published simulations of grain growth in disk substructures. Our observational results are in very good agreement with the predictions of models for grain growth in dust rings that include fragmentation and planetesimal formation through the streaming instability.
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) detect two asymmetries on the ring at $rsim$20~au. They could be two vortices in early evolution, the destruction of a large scale vortex, or double continuum emission peaks with different dust sizes. We also found millimeter emissions with $sim$50~$mu$Jy (a lower limit dust mass of 0.3~$M_{rm Moon}$) inside the 3-au ring. To characterize these emissions, we modeled the spectral energy distribution (SED) of DM~Tau using a Monte Carlo radiative transfer code. We found that an additional ring at $r=$ 1~au could explain both the DM~Tau SED and the central point source. The disk midplane temperature at the 1-au ring calculated in our modeling is less than the typical water sublimation temperature of 150~K, prompting the possibility of forming small icy planets there.
We present ALMA 0.87 mm continuum, HCO+ J=4--3 emission line, and CO J=3--2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two component transitional disk system with a radial dust gap of 0.2 +/- 0.05, an azimuthal gap in the HCO+ J=4--3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analogue in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D (Whitney et al. 2013) using a two disk components. We find that there is a radial gap that extends from 15-60 au in all grain sizes which differs from previous work.
We present high resolution H-band polarized intensity (PI; FWHM = 0.1: 14 AU) and L-band imaging data (FWHM = 0.11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0.2) up to 210 AU (1.5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is ~70 AU. Our data show that the geometric center of the disk shifts by ~6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L-band imaging data, we put an upper limit mass of companions at ~30 to ~50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا