No Arabic abstract
We investigated the spin dynamics by electron spin resonance (ESR) of the Yb-based, effective spin-1/2 delafossites NaYbO$_{2}$, AgYbO$_{2}$, LiYbS$_{2}$, NaYbS$_{2}$, and NaYbSe$_{2}$ which all show an absence of magnetic order down to lowest reachable temperatures and thus are prime candidates to host a quantum spin-liquid ground state in the vicinity of long range magnetic order. Clearly resolved ESR spectra allow to obtain well-defined $g$ values which are determined by the crystal field of the distorted octahedral surrounding of the Yb-ions in trigonal symmetry. This local crystal field information provides important input to characterize the effective $S = 1/2$ Kramers doublet as well as the anisotropic exchange coupling between the Yb ions which is crucial for the nature of the groundstate. The ESR linewidth $Delta B$ is characterised by the spin dynamics and is mainly determined by the anisotropic exchange coupling. We discuss and compare $Delta B$ of the above mentioned delafossites focussing on the low temperature behaviour which is dominated by the growing influence of spin correlations.
While the Heisenberg model for magnetic Mott insulators on planar lattice structures is comparatively well understood in the case of transition metal ions, the intrinsic spin-orbit entanglement of 4f magnetic ions on such lattices shows fascinating new physics largely due to corresponding strong anisotropies both in their single-ion and their exchange properties. We show here that the Yb delafossites, containing perfect magnetic Yb$^{3+}$ triangular lattice planes with pseudospin $s=1/2$ at low temperatures, are an ideal platform to study these new phenomena. Competing frustrated interactions may lead to an absence of magnetic order associated to a gapless spin liquid ground state with a huge linear specific heat exceeding that of many heavy fermions, whereas the application of a magnetic field induces anisotropic magnetic order with successive transitions into different long ranged ordered structures. In this comparative study, we discuss our experimental findings in terms of a unified crystal-field and exchange model. We combine electron paramagnetic resonance (EPR) experiments and results from neutron scattering with measurements of the magnetic susceptibility, isothermal magnetization up to full polarization, and specific heat to determine the relevant model parameters. The impact of the crystal field is discussed as well as the symmetry-compatible form of the exchange tensor, and we give explicit expressions for the anisotropic g factor, the temperature dependence of the susceptibility, the exchange-narrowed EPR linewidth and the saturation field.
Here, we report the synthesis and magnetic properties of a Yb-based triangular-lattice compound LiYbS$_2$. At low temperatures, it features an effective spin-$frac{1}{2}$ state due to the combined effect of crystal electric field and spin orbit coupling. Magnetic susceptibility measurements and $^7$Li nuclear magnetic resonance experiments reveal the absence of magnetic long range ordering down to 2~K, which suggests a possible quantum spin liquid ground state. A dominant antiferromagnetic nearest neighbour exchange interaction $J/k_{rm B}simeq$ 5.3~K could be extracted form the magnetic susceptibility. The NMR linewidth analysis yields the coupling constant between the Li nuclei and Yb$^{3+}$ ions which was found to be purely dipolar in nature.
The spin-dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation $U$, exchange interaction $J$ and filling of electrons. We have found that the ground state configurations exhibit long range Ne`el order, ferromagnetism or a mixture of both as $J$ is varied. The magnetic moments of itinerant ($d$) and localized ($f$) electrons are also studied. For the one-fourth filling case we found no magnetic moment from $d$- and $f$-electrons for $U$ less than a critical value.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high temperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
Motivated by the recent experiment on a rare-earth material YbMgGaO$_4$ [Y. Li textit{et al.}, Phys. Rev. Lett. textbf{115}, 167203 (2015)], which found that the ground state of YbMgGaO$_4$ is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-$1/2$ model that was proposed to describe YbMgGaO$_4$. Using the density-matrix renormalization group method in combination with the exact diagonalization, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram there is a $120^{circ}$ phase and two distinct stripe phases. The transitions from the two stripe phases to the $120^{circ}$ phase are of the first order. However, the transition between the two stripe phases is not the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may be also important to model the material YbMgGaO$_4$. These findings will stimulate further experimental and theoretical works in understanding the quantum spin liquid ground state in YbMgGaO$_4$.