Do you want to publish a course? Click here

Asymptotics of random resonances generated by a point process of delta-interactions

75   0   0.0 ( 0 )
 Added by Illya Karabash M.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce and study the following model for random resonances: we take a collection of point interactions $Upsilon_j$ generated by a simple finite point process in the 3-D space and consider the resonances of associated random Schrodinger Hamiltonians $H_Upsilon = -Delta + ``sum mathfrak{m}(alpha) delta (x - Upsilon_j)``$. These resonances are zeroes of a random exponential polynomial, and so form a point process $Sigma (H_Upsilon)$ in the complex plane $mathbb{C}$. We show that the counting function for the set of random resonances $Sigma (H_Upsilon)$ in $mathbb{C}$-discs with growing radii possesses Weyl-type asymptotics almost surely for a uniform binomial process $Upsilon$, and obtain an explicit formula for the limiting distribution as $m to infty$ of the leading parameter of the asymptotic chain of `most narrow resonances generated by a sequence of uniform binomial processes $Upsilon^m$ with $m$ points. We also pose a general question about the limiting behavior of the point process formed by leading parameters of asymptotic sequences of resonances. Our study leads to questions about metric characteristics for the combinatorial geometry of $m$ samples of a random point in the 3-D space and related statistics of extreme values.

rate research

Read More

Random plane wave is conjectured to be a universal model for high-energy eigenfunctions of the Laplace operator on generic compact Riemanian manifolds. This is known to be true on average. In the present paper we discuss one of important geometric observable: critical points. We first compute one-point function for the critical point process, in particular we compute the expected number of critical points inside any open set. After that we compute the short-range asymptotic behaviour of the two-point function. This gives an unexpected result that the second factorial moment of the number of critical points in a small disc scales as the fourth power of the radius.
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sanov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Steins method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.
Motivated by the long-time transport properties of quantum waves in weakly disordered media, the present work puts random Schrodinger operators into a new spectral perspective. Based on a stationary random version of a Floquet type fibration, we reduce the description of the quantum dynamics to a fibered family of abstract spectral perturbation problems on the underlying probability space. We state a natural resonance conjecture for these fibered operators: in contrast with periodic and quasiperiodic settings, this would entail that Bloch waves do not exist as extended states, but rather as resonant modes, and this would justify the expected exponential decay of time correlations. Although this resonance conjecture remains open, we develop new tools for spectral analysis on the probability space, and in particular we show how ideas from Malliavin calculus lead to rigorous Mourre type results: we obtain an approximate dynamical resonance result and the first spectral proof of the decay of time correlations on the kinetic timescale. This spectral approach suggests a whole new way of circumventing perturbative expansions and renormalization techniques.
For each of the $8$ isotropy classes of elastic materials, we consider a homogeneous random field taking values in the fixed point set $mathsf{V}$ of the corresponding class, that is isotropic with respect to the natural orthogonal representation of a group lying between the isotropy group of the class and its normaliser. We find the general form of the correlation tensors of orders $1$ and $2$ of such a field, and the fields spectral expansion.
This is an elementary review, aimed at non-specialists, of results that have been obtained for the limiting distribution of eigenvalues and for the operator norms of real symmetric random matrices via the method of moments. This method goes back to a remarkable argument of Eugen Wigner some sixty years ago which works best for independent matrix entries, as far as symmetry permits, that are all centered and have the same variance. We then discuss variations of this classical result for ensembles for which the variance may depend on the distance of the matrix entry to the diagonal, including in particular the case of band random matrices, and/or for which the required independence of the matrix entries is replaced by some weaker condition. This includes results on ensembles with entries from Curie-Weiss random variables or from sequences of exchangeable random variables that have been obtained quite recently.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا