The twin group $T_n$ is a right angled Coxeter group generated by $n- 1$ involutions and having only far commutativity relations. These groups can be thought of as planar analogues of Artin braid groups. In this note, we study some properties of twin groups whose analogues are well-known for Artin braid groups. We give an algorithm for two twins to be equivalent under individual Markov moves. Further, we show that twin groups $T_n$ have $R_infty$-property and are not co-Hopfian for $n ge 3$.