No Arabic abstract
Reconstructing 3D distributions from their 2D projections is a ubiquitous problem in various scientific fields, particularly so in observational astronomy. In this work, we present a new approach to solving this problem: a Vienna inverse-Abel-transform based object reconstruction algorithm AVIATOR. The reconstruction that it performs is based on the assumption that the distribution along the line of sight is similar to the distribution in the plane of projection, which requires a morphological analysis of the structures in the projected image. The output of the AVIATOR algorithm is an estimate of the 3D distribution in the form of a reconstruction volume that is calculated without the problematic requirements that commonly occur in other reconstruction methods such as symmetry in the plane of projection or modelling of radial profiles. We demonstrate the robustness of the technique to different geometries, density profiles, and noise by applying the AVIATOR algorithm to several model objects. In addition, the algorithm is applied to real data: We reconstruct the density and temperature distributions of two dense molecular cloud cores and find that they are in excellent agreement with profiles reported in the literature. The AVIATOR algorithm is thus capable of reconstructing 3D distributions of physical quantities consistently using an intuitive set of assumptions.
Astronomical observations of extended sources, such as cubes of integral field spectroscopy (IFS), encode auto-correlated spatial structures that cannot be optimally exploited by standard methodologies. This work introduces a novel technique to model IFS datasets, which treats the observed galaxy properties as realizations of an unobserved Gaussian Markov random field. The method is computationally efficient, resilient to the presence of low-signal-to-noise regions, and uses an alternative to Markov Chain Monte Carlo for fast Bayesian inference, the Integrated Nested Laplace Approximation (INLA). As a case study, we analyse 721 IFS data cubes of nearby galaxies from the CALIFA and PISCO surveys, for which we retrieve the maps of the following physical properties: age, metallicity, mass and extinction. The proposed Bayesian approach, built on a generative representation of the galaxy properties, enables the creation of synthetic images, recovery of areas with bad pixels, and an increased power to detect structures in datasets subject to substantial noise and/or sparsity of sampling. A snippet code to reproduce the analysis of this paper is available in the COIN toolbox, together with the field reconstructions of the CALIFA and PISCO samples.
Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt to predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficiently generate object shapes in the form of dense point clouds. We use 2D convolutional operations to predict the 3D structure from multiple viewpoints and jointly apply geometric reasoning with 2D projection optimization. We introduce the pseudo-renderer, a differentiable module to approximate the true rendering operation, to synthesize novel depth maps for optimization. Experimental results for single-image 3D object reconstruction tasks show that we outperforms state-of-the-art methods in terms of shape similarity and prediction density.
Large multi-object spectroscopic surveys require automated algorithms to optimise their observing strategy. One of the most ambitious upcoming spectroscopic surveys is the 4MOST survey. The 4MOST survey facility is a fibre-fed spectroscopic instrument on the VISTA telescope with a large enough field of view to survey a large fraction of the southern sky within a few years. Several Galactic and extragalactic surveys will be carried out simultaneously, so the combined target density will strongly vary. In this paper, we describe a new tiling algorithm that can naturally deal with the large target density variations on the sky and which automatically handles the different exposure times of targets. The tiling pattern is modelled as a marked point process, which is characterised by a probability density that integrates the requirements imposed by the 4MOST survey. The optimal tilling pattern with respect to the defined model is estimated by the tiles configuration that maximises the proposed probability density. In order to achieve this maximisation a simulated annealing algorithm is implemented. The algorithm automatically finds an optimal tiling pattern and assigns a tentative sky brightness condition and exposure time for each tile, while minimising the total execution time that is needed to observe the list of targets in the combined input catalogue of all surveys. Hence, the algorithm maximises the long-term observing efficiency and provides an optimal tiling solution for the survey. While designed for the 4MOST survey, the algorithm is flexible and can with simple modifications be applied to any other multi-object spectroscopic survey.
In dense starless and protostellar cores, the relative abundance of deuterated species to their non-deuterated counterparts can become orders of magnitude greater than in the local interstellar medium. This enhancement proceeds through multiple pathways in the gas phase and on dust grains, where the chemistry is strongly dependent on the physical conditions. In this Chapter, we discuss how sensitive, high resolution observations with the ngVLA of emission from deuterated molecules will trace both the dense gas structure and kinematics on the compact physical scales required to track the gravitational collapse of star-forming cores and the subsequent formation of young protostars and circumstellar accretion regions. Simultaneously, such observations will play a critical role in tracing the chemical history throughout the various phases of star and planet formation. Many low-J transitions of key deuterated species, along with their undeuterated counterparts, lie within the 60-110 GHz frequency window, the lower end of which is largely unavailable with current facilities and instrumentation. The combination of sensitivity and angular resolution provided only by the ngVLA will enable unparalleled detailed studies of the physics and chemistry of the earliest stages of star formation.
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image. The key idea is to optimize for detection, alignment and shape jointly over all objects in the RGB image, while focusing on realistic and physically plausible reconstructions. To this end, we propose a keypoint detector that localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes -- all in a single forward pass. The proposed method formulates 3D shape reconstruction as a shape selection problem, i.e. it selects among exemplar shapes from a given database. This makes it agnostic to shape representations, which enables a lightweight reconstruction of realistic and visually-pleasing shapes based on CAD-models, while the training objective is formulated around point clouds and voxel representations. A collision-loss promotes non-intersecting objects, further increasing the reconstruction realism. Given the RGB image, the presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable. Our experiments compare multiple approaches for 9-DoF bounding box estimation, evaluate the novel shape-selection mechanism and compare to recent methods in terms of 3D bounding box estimation and 3D shape reconstruction quality.