Completeness of algebraic ZX-calculus over arbitrary commutative rings and semirings


Abstract in English

ZX-calculus is a strict mathematical formalism for graphical quantum computing which is based on the field of complex numbers. In this paper, we extend its power by generalising ZX-calculus to such an extent that it is universal both in an arbitrary commutative ring and in an arbitrary commutative semiring. Furthermore, we follow the framework of arXiv:2007.13739 to prove respectively that the proposed ZX-calculus over an arbitrary commutative ring (semiring) is complete for matrices over the same ring (semiring), via a normal form inspired from matrix elementary operations such as row addition and row multiplication. This work could lead to various applications including doing elementary number theory in string diagrams.

Download