Many constructions in computability theory rely on time tricks. In the higher setting, relativising to some oracles shows the necessity of these. We construct an oracle~$A$ and a set~$X$, higher Turing reducible to~$X$, but for which $Psi(A) e X$ for any higher functional~$Psi$ which is consistent on all oracles. We construct an oracle~$A$ relative to which there is no universal higher ML-test. On the other hand, we show that badness has its limits: there are no higher self-PA oracles, and for no~$A$ can we construct a higher $A$-c.e. set which is also higher $A$-ML-random. We study various classes of bad oracles and differentiate between them using other familiar classes. For example, bad oracles for consistent reductions can be higher ML-random, whereas bad oracles for universal tests cannot.