Do you want to publish a course? Click here

A CNN-LSTM Hybrid Framework for Wrist Kinematics Estimation Using Surface Electromyography

65   0   0.0 ( 0 )
 Added by Tianzhe Bao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Convolutional neural network (CNN) has been widely exploited for simultaneous and proportional myoelectric control due to its capability of deriving informative, representative and transferable features from surface electromyography (sEMG). However, muscle contractions have strong temporal dependencies but conventional CNN can only exploit spatial correlations. Considering that long short-term memory neural network (LSTM) is able to capture long-term and non-linear dynamics of time-series data, in this paper we propose a CNNLSTM hybrid framework to fully explore the temporal-spatial information in sEMG. Firstly, CNN is utilized to extract deep features from sEMG spectrum, then these features are processed via LSTM-based sequence regression to estimate wrist kinematics. Six healthy participants are recruited for the participatory collection and motion analysis under various experimental setups. Estimation results in both intra-session and inter-session evaluations illustrate that CNN-LSTM significantly outperforms CNN and conventional machine learning approaches, particularly when complex wrist movements are activated.



rate research

Read More

Air pollution has long been a serious environmental health challenge, especially in metropolitan cities, where air pollutant concentrations are exacerbated by the street canyon effect and high building density. Whilst accurately monitoring and forecasting air pollution are highly crucial, existing data-driven models fail to fully address the complex interaction between air pollution and urban dynamics. Our Deep-AIR, a novel hybrid deep learning framework that combines a convolutional neural network with a long short-term memory network, aims to address this gap to provide fine-grained city-wide air pollution estimation and station-wide forecast. Our proposed framework creates 1x1 convolution layers to strengthen the learning of cross-feature spatial interaction between air pollution and important urban dynamic features, particularly road density, building density/height, and street canyon effect. Using Hong Kong and Beijing as case studies, Deep-AIR achieves a higher accuracy than our baseline models. Our model attains an accuracy of 67.6%, 77.2%, and 66.1% in fine-grained hourly estimation, 1-hr, and 24-hr air pollution forecast for Hong Kong, and an accuracy of 65.0%, 75.3%, and 63.5% for Beijing. Our saliency analysis has revealed that for Hong Kong, street canyon and road density are the best estimators for NO2, while meteorology is the best estimator for PM2.5.
This study presents a novel method to recognize human physical activities using CNN followed by LSTM. Achieving high accuracy by traditional machine learning algorithms, (such as SVM, KNN and random forest method) is a challenging task because the data acquired from the wearable sensors like accelerometer and gyroscope is a time-series data. So, to achieve high accuracy, we propose a multi-head CNN model comprising of three CNNs to extract features for the data acquired from different sensors and all three CNNs are then merged, which are followed by an LSTM layer and a dense layer. The configuration of all three CNNs is kept the same so that the same number of features are obtained for every input to CNN. By using the proposed method, we achieve state-of-the-art accuracy, which is comparable to traditional machine learning algorithms and other deep neural network algorithms.
Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific chemicals in the brain, the function of some brain regions is out of balance, leading to the lack of coordination between thoughts, actions, and emotions. This study provides various intelligent Deep Learning (DL)-based methods for automated SZ diagnosis via EEG signals. The obtained results are compared with those of conventional intelligent methods. In order to implement the proposed methods, the dataset of the Institute of Psychiatry and Neurology in Warsaw, Poland, has been used. First, EEG signals are divided into 25-seconds time frames and then were normalized by z-score or norm L2. In the classification step, two different approaches are considered for SZ diagnosis via EEG signals. In this step, the classification of EEG signals is first carried out by conventional DL methods, e.g., KNN, DT, SVM, Bayes, bagging, RF, and ET. Various proposed DL models, including LSTMs, 1D-CNNs, and 1D-CNN-LSTMs, are used in the following. In this step, the DL models were implemented and compared with different activation functions. Among the proposed DL models, the CNN-LSTM architecture has had the best performance. In this architecture, the ReLU activation function and the z-score and L2 combined normalization are used. The proposed CNN-LSTM model has achieved an accuracy percentage of 99.25%, better than the results of most former studies in this field. It is worth mentioning that in order to perform all simulations, the k-fold cross-validation method with k=5 has been used.
Named entity recognition (NER) is a foundational technology for information extraction. This paper presents a flexible NER framework compatible with different languages and domains. Inspired by the idea of distant supervision (DS), this paper enhances the representation by increasing the entity-context diversity without relying on external resources. We choose different layer stacks and sub-network combinations to construct the bilateral networks. This strategy can generally improve model performance on different datasets. We conduct experiments on five languages, such as English, German, Spanish, Dutch and Chinese, and biomedical fields, such as identifying the chemicals and gene/protein terms from scientific works. Experimental results demonstrate the good performance of this framework.
In automated driving systems (ADS) and advanced driver-assistance systems (ADAS), an efficient road segmentation is necessary to perceive the drivable region and build an occupancy map for path planning. The existing algorithms implement gigantic convolutional neural networks (CNNs) that are computationally expensive and time consuming. In this paper, we introduced distributed LSTM, a neural network widely used in audio and video processing, to process rows and columns in images and feature maps. We then propose a new network combining the convolutional and distributed LSTM layers to solve the road segmentation problem. In the end, the network is trained and tested in KITTI road benchmark. The result shows that the combined structure enhances the feature extraction and processing but takes less processing time than pure CNN structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا