Do you want to publish a course? Click here

A Fast Matrix-Completion-Based Approach for Recommendation Systems

91   0   0.0 ( 0 )
 Added by Wenjie Sun
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Matrix completion is widely used in machine learning, engineering control, image processing, and recommendation systems. Currently, a popular algorithm for matrix completion is Singular Value Threshold (SVT). In this algorithm, the singular value threshold should be set first. However, in a recommendation system, the dimension of the preference matrix keeps changing. Therefore, it is difficult to directly apply SVT. In addition, what the users of a recommendation system need is a sequence of personalized recommended results rather than the estimation of their scores. According to the above ideas, this paper proposes a novel approach named probability completion model~(PCM). By reducing the data dimension, the transitivity of the similar matrix, and singular value decomposition, this approach quickly obtains a completion matrix with the same probability distribution as the original matrix. The approach greatly reduces the computation time based on the accuracy of the sacrifice part, and can quickly obtain a low-rank similarity matrix with data trend approximation properties. The experimental results show that PCM can quickly generate a complementary matrix with similar data trends as the original matrix. The LCS score and efficiency of PCM are both higher than SVT.



rate research

Read More

We propose a novel algorithm for sequential matrix completion in a recommender system setting, where the $(i,j)$th entry of the matrix corresponds to a user $i$s rating of product $j$. The objective of the algorithm is to provide a sequential policy for user-product pair recommendation which will yield the highest possible ratings after a finite time horizon. The algorithm uses a Gamma process factor model with two posterior-focused bandit policies, Thompson Sampling and Information-Directed Sampling. While Thompson Sampling shows competitive performance in simulations, state-of-the-art performance is obtained from Information-Directed Sampling, which makes its recommendations based off a ratio between the expected reward and a measure of information gain. To our knowledge, this is the first implementation of Information Directed Sampling on large real datasets. This approach contributes to a recent line of research on bandit approaches to collaborative filtering including Kawale et al. (2015), Li et al. (2010), Bresler et al. (2014), Li et al. (2016), Deshpande & Montanari (2012), and Zhao et al. (2013). The setting of this paper, as has been noted in Kawale et al. (2015) and Zhao et al. (2013), presents significant challenges to bounding regret after finite horizons. We discuss these challenges in relation to simpler models for bandits with side information, such as linear or gaussian process bandits, and hope the experiments presented here motivate further research toward theoretical guarantees.
In this paper we develop a novel recommendation model that explicitly incorporates time information. The model relies on an embedding layer and TSL attention-like mechanism with inner products in different vector spaces, that can be thought of as a modification of multi-headed attention. This mechanism allows the model to efficiently treat sequences of user behavior of different length. We study the properties of our state-of-the-art model on statistically designed data set. Also, we show that it outperforms more complex models with longer sequence length on the Taobao User Behavior dataset.
With the advent of deep learning, neural network-based recommendation models have emerged as an important tool for tackling personalization and recommendation tasks. These networks differ significantly from other deep learning networks due to their need to handle categorical features and are not well studied or understood. In this paper, we develop a state-of-the-art deep learning recommendation model (DLRM) and provide its implementation in both PyTorch and Caffe2 frameworks. In addition, we design a specialized parallelization scheme utilizing model parallelism on the embedding tables to mitigate memory constraints while exploiting data parallelism to scale-out compute from the fully-connected layers. We compare DLRM against existing recommendation models and characterize its performance on the Big Basin AI platform, demonstrating its usefulness as a benchmark for future algorithmic experimentation and system co-design.
Due to its nature of learning from dynamic interactions and planning for long-run performance, reinforcement learning (RL) recently has received much attention in interactive recommender systems (IRSs). IRSs usually face the large discrete action space problem, which makes most of the existing RL-based recommendation methods inefficient. Moreover, data sparsity is another challenging problem that most IRSs are confronted with. While the textual information like reviews and descriptions is less sensitive to sparsity, existing RL-based recommendation methods either neglect or are not suitable for incorporating textual information. To address these two problems, in this paper, we propose a Text-based Deep Deterministic Policy Gradient framework (TDDPG-Rec) for IRSs. Specifically, we leverage textual information to map items and users into a feature space, which greatly alleviates the sparsity problem. Moreover, we design an effective method to construct an action candidate set. By the policy vector dynamically learned from TDDPG-Rec that expresses the users preference, we can select actions from the candidate set effectively. Through experiments on three public datasets, we demonstrate that TDDPG-Rec achieves state-of-the-art performance over several baselines in a time-efficient manner.
The KNN approach, which is widely used in recommender systems because of its efficiency, robustness and interpretability, is proposed for session-based recommendation recently and outperforms recurrent neural network models. It captures the most recent co-occurrence information of items by considering the interaction time. However, it neglects the co-occurrence information of items in the historical behavior which is interacted earlier and cannot discriminate the impact of items and sessions with different popularity. Due to these observations, this paper presents a new contextual KNN approach to address these issues for session-based recommendation. Specifically, a diffusion-based similarity method is proposed for considering the popularity of vertices in session-item bipartite network, and a candidate selection method is proposed to capture the items that are co-occurred with different historical clicked items in the same session efficiently. Comprehensive experiments are conducted to demonstrate the effectiveness of our KNN approach over the state-of-the-art KNN approach for session-based recommendation on three benchmark datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا