Do you want to publish a course? Click here

Multi-version Indexing in Flash-based Key-Value Stores

257   0   0.0 ( 0 )
 Added by Pulkit Misra
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Maintaining multip



rate research

Read More

87 - Yuzhe Tang , Ju Chen , Kai Li 2019
Authenticated data storage on an untrusted platform is an important computing paradigm for cloud applications ranging from big-data outsourcing, to cryptocurrency and certificate transparency log. These modern applications increasingly feature update-intensive workloads, whereas existing authenticated data structures (ADSs) designed with in-place updates are inefficient to handle such workloads. In this paper, we address this issue and propose a novel authenticated log-structured merge tree (eLSM) based key-value store by leveraging Intel SGX enclaves. We present a system design that runs the code of eLSM store inside enclave. To circumvent the limited enclave memory (128 MB with the latest Intel CPUs), we propose to place the memory buffer of the eLSM store outside the enclave and protect the buffer using a new authenticated data structure by digesting individual LSM-tree levels. We design protocols to support query authentication in data integrity, completeness (under range queries), and freshness. The proof in our protocol is made small by including only the Merkle proofs at selective levels. We implement eLSM on top of Google LevelDB and Facebook RocksDB with minimal code change and performance interference. We evaluate the performance of eLSM under the YCSB workload benchmark and show a performance advantage of up to 4.5X speedup.
We introduce the concept of design continuums for the data layout of key-value stores. A design continuum unifies major distinct data structure designs under the same model. The critical insight and potential long-term impact is that such unifying models 1) render what we consider up to now as fundamentally different data structures to be seen as views of the very same overall design space, and 2) allow seeing new data structure designs with performance properties that are not feasible by existing designs. The core intuition behind the construction of design continuums is that all data structures arise from the very same set of fundamental design principles, i.e., a small set of data layout design concepts out of which we can synthesize any design that exists in the literature as well as new ones. We show how to construct, evaluate, and expand, design continuums and we also present the first continuum that unifies major data structure designs, i.e., B+tree, B-epsilon-tree, LSM-tree, and LSH-table. The practical benefit of a design continuum is that it creates a fast inference engine for the design of data structures. For example, we can predict near instantly how a specific design change in the underlying storage of a data system would affect performance, or reversely what would be the optimal data structure (from a given set of designs) given workload characteristics and a memory budget. In turn, these properties allow us to envision a new class of self-designing key-value stores with a substantially improved ability to adapt to workload and hardware changes by transitioning between drastically different data structure designs to assume a diverse set of performance properties at will.
Database administrators construct secondary indexes on data tables to accelerate query processing in relational database management systems (RDBMSs). These indexes are built on top of the most frequently queried columns according to the data statistics. Unfortunately, maintaining multiple secondary indexes in the same database can be extremely space consuming, causing significant performance degradation due to the potential exhaustion of memory space. In this paper, we demonstrate that there exist many opportunities to exploit column correlations for accelerating data access. We propose HERMIT, a succinct secondary indexing mechanism for modern RDBMSs. HERMIT judiciously leverages the rich soft functional dependencies hidden among columns to prune out redundant structures for indexed key access. Instead of building a complete index that stores every single entry in the key columns, HERMIT navigates any incoming key access queries to an existing index built on the correlated columns. This is achieved through the Tiered Regression Search Tree (TRS-Tree), a succinct, ML-enhanced data structure that performs fast curve fitting to adaptively and dynamically capture both column correlations and outliers. Our extensive experimental study in two different RDBMSs have confirmed that HERMIT can significantly reduce space consumption with limited performance overhead in terms of query response time and index maintenance time, especially when supporting complex range queries.
The cloud infrastructure motivates disaggregation of monolithic data stores into components that are assembled together based on an applications workload. This study investigates disaggregation of an LSM-tree key-value store into components that communicate using RDMA. These components separate storage from processing, enabling processing components to share storage bandwidth and space. The processing components scatter blocks of a file (SSTable) across an arbitrary number of storage components and balance load across them using power-of-d. They construct ranges dynamically at runtime to parallelize compaction and enhance performance. Each component has configuration knobs that control its scalability. The resulting component-based system, Nova-LSM, is elastic. It outperforms its monolithic counterparts, both LevelDB and RocksDB, by several orders of magnitude with workloads that exhibit a skewed pattern of access to data.
Data series similarity search is a core operation for several data series analysis applications across many different domains. Nevertheless, even state-of-the-art techniques cannot provide the time performance required for large data series collections. We propose ParIS and ParIS+, the first disk-based data series indices carefully designed to inherently take advantage of multi-core architectures, in order to accelerate similarity search processing times. Our experiments demonstrate that ParIS+ completely removes the CPU latency during index construction for disk-resident data, and for exact query answering is up to 1 order of magnitude faster than the current state of the art index scan method, and up to 3 orders of magnitude faster than the optimized serial scan method. ParIS+ (which is an evolution of the ADS+ index) owes its efficiency to the effective use of multi-core and multi-socket architectures, in order to distribute and execute in parallel both index construction and query answering, and to the exploitation of the Single Instruction Multiple Data (SIMD) capabilities of modern CPUs, in order to further parallelize the execution of instructions inside each core.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا