Do you want to publish a course? Click here

Testing stellar opacities using asteroseismology

335   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present what constraints on opacities can be derived from the analysis of stellar pulsations of BA-type main-sequence stars. This analysis consists of the construction of complex seismic models which reproduce the observed frequencies as well as the bolometric flux amplitude extracted from the multi-colour photometric variations. Stellar seismology, i.e., {it asteroseismology}, is a relatively young branch of astrophysics and, currently, provides the most accurate test of the theory of internal structure and evolution. We show that opacities under stellar conditions need to be modified at the depth of temperatures $T=110~000-290~000$,K. The revision of opacity data is of great importance because they are crucial for all branches of astrophysics.

rate research

Read More

We examine the role of opacities in stellar pulsation with reference to Cepheids and RR Lyraes, and examine the effect of augmented opacities on the theoretical pulsation light curves in key temperature ranges. The temperature ranges are provided by recent experimental and theoretical work that have suggested that the iron opacities have been considerably underestimated. For Cepheids, we find that the augmented opacities have noticeable effects in certain period ranges (around $log P approx 1$) even though there is a degeneracy with mixing length. We also find significant effects in theoretical models of B-star pulsators.
We undertake another attempt towards seismic modelling of the most intensive studied main sequence pulsators of the early B spectral type, $ u$ Eridani. Our analysis is extended by a requirement of fitting not only pulsational frequencies but also the complex amplitude of the bolometric flux variation, $f$, related to each mode frequency. This approach, called {it complex asteroseismology}, provides a unique test of stellar parameters, atmospheres and opacities. In particular, the concordance of the empirical and theoretical values of $f$ we obtained for the high-order g mode opens a new gate in seismic studies of the main-sequence hybrid pulsators. The most intriguing and challenging result is that whereas an agreement of the theoretical and empirical values of $f$ for the radial mode can be achieved only with the OPAL data, a preference for the OP tables is derived from the analysis of the high-order gravity mode.
The efficiency of the transport of angular momentum and chemical elements inside intermediate-mass stars lacks proper calibration, thereby introducing uncertainties on a stars evolutionary pathway. Improvements require better estimation of stellar masses, evolutionary stages, and internal mixing properties. We aim to develop a neural network approach for asteroseismic modelling and test its capacity to provide stellar masses, ages, and overshooting parameter for a sample of 37 $gamma$ Doradus stars. Here, our goal is to perform the parameter estimation from modelling of individual periods measured for dipole modes with consecutive radial order. We have trained neural networks to predict theoretical pulsation periods of high-order gravity modes as well as the luminosity, effective temperature, and surface gravity for a given mass, age, overshooting parameter, diffusive envelope mixing, metallicity, and near-core rotation frequency. We have applied our neural networks for Computing Pulsation Periods and Photospheric Observables, C-3PO, to our sample and compute grids of stellar pulsation models for the estimated parameters. We present the near-core rotation rates (from literature) as a function of the inferred stellar age and critical rotation rate. We assess the rotation rates of the sample near the start of the main sequence assuming rigid rotation. Furthermore, we measure the extent of the core overshoot region and find no correlation with mass, age, or rotation. The neural network approach developed in this study allows for the derivation of stellar properties dominant for stellar evolution -- such as mass, age, and extent of core-boundary mixing. It also opens a path for future estimation of mixing profiles throughout the radiative envelope, with the aim to infer those profiles for large samples of $gamma$ Doradus stars.
We present results of a {bf comprehensive} asteroseismic modelling of the $beta$ Cephei variable $theta$ Ophiuchi. {bf We call these studies {it complex asteroseismology} because our goal is to reproduce both pulsational frequencies as well as corresponding values of a complex, nonadiabatic parameter, $f$, defined by the radiative flux perturbation.} To this end, we apply the method of simultaneous determination of the spherical harmonic degree, $ell$, of excited pulsational mode and the corresponding nonadiabatic $f$ parameter from combined multicolour photometry and radial velocity data. Using both the OP and OPAL opacity data, we find a family of seismic models which reproduce the radial and dipole centroid mode frequencies, as well as the $f$ parameter associated with the radial mode. Adding the nonadiabatic parameter to seismic modelling of the B-type main sequence pulsators yields very strong constraints on stellar opacities. In particular, only with one source of opacities it is possible to agree the empirical values of $f$ with their theoretical counterparts. Our results for $theta$ Oph point substantially to preference for the OPAL data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا