Do you want to publish a course? Click here

Clustering in $^{18}$O -- absolute determination of branching ratios via high-resolution particle spectroscopy

102   0   0.0 ( 0 )
 Added by Stuart Pirrie
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The determination of absolute branching ratios for high-energy states in light nuclei is an important and useful tool for probing the underlying nuclear structure of individual resonances: for example, in establishing the tendency of an excited state towards $alpha$-cluster structure. Difficulty arises in measuring these branching ratios due to similarities in available decay channels, such as ($mathbf{^{18}}$O,$mathbf{n}$) and ($mathbf{^{18}}$O,$mathbf{2n}$), as well as differences in geometric efficiencies due to population of bound excited levels in daughter nuclei. Methods are presented using Monte Carlo techniques to overcome these issues.



rate research

Read More

Photon branching ratios are critical input data for activities such as nuclear materials protection and accounting because they allow material compositions to be extracted from measurements of gamma-ray intensities. Uncertainties in these branching ratios are often a limiting source of uncertainty in composition determination. Here, we use high statistics, high resolution (~60-70eV full-width-at-half-maximum at 100 keV) gamma-ray spectra acquired using microcalorimeter sensors to substantially reduce the uncertainties for 11 plutonium (238Pu,239Pu,241Pu) and 241Am branching ratios important for material control and accountability and nuclear forensics in the energy range of 125 keV to 208 keV. We show a reduction in uncertainty of over a factor of three for one branching ratio and a factor of 2{3 for four branching ratios.
136 - A. Bey 2008
Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the vector coupling constant of the weak interaction and the Vud quark-mixing matrix element. For part of the experimental studies presented here, the JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga. The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is in agreement with previous measurements and allows to determine the ft value and the universal Ft value for the super-allowed beta decay of 62Ga.
Based on measurements the branching ratios for the decay of the recently discovered dibaryon resonance $d^*(2380)$ into two-pion production channels and into the $np$ channel are evaluated. Possibilities for a decay into the isoscalar single-pion channel are discussed. Finally also the electromagnetic decay of $d^*(2380)$ is considered.
We have measured the beta-decay branching ratio for the transition from 21Na to the first excited state of 21Ne. A recently published test of the standard model, which was based on a measurement of the beta-nu correlation in the decay of 21Na, depended on this branching ratio. However, until now only relatively imprecise (and, in some cases, contradictory) values existed for it. Our new result, 4.74(4)%, reduces but does not remove the reported discrepancy with the standard model.
517 - M.Iodice , F.Cusanno , A.Acha 2007
An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed lam{12}{B} spectrum shows for the first time identifiable strength in the core-excited region between the ground-state {it s}-wave $Lambda$ peak and the 11 MeV {it p}-wave $Lambda$ peak.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا