Do you want to publish a course? Click here

Propagation and stability of relativistic jets

64   0   0.0 ( 0 )
 Added by Manel Perucho Pla
 Publication date 2019
  fields Physics
and research's language is English
 Authors Manel Perucho




Ask ChatGPT about the research

A simple look at the steady high-energy Universe reveals a clear correlation with outflows generated around compact objects (winds and jets). In the case of relativistic jets, they are thought to be produced as a consequence of the extraction of rotational energy from a Kerr black hole (Blandford-Znajek), or from the disc (Blandford-Payne). A fraction of the large energy budget provided by accretion and/or black hole rotational energy is invested into jet formation. After formation, the acceleration and collimation of these outflows allow them to propagate to large distances away from the compact object. The synchrotron cooling times demand that re-acceleration of particles takes place along the jets to explain high-energy and very-high-energy emission from kiloparsec scales. At these scales, jets in radio galaxies are divided in two main morphological/luminosity types, namely, Fanaroff-Riley type I and II (FRI, FRII), the latter being more luminous, collimated and edge-brightened than the former, which show clear hints of decollimation and deceleration. In this contribution, I summarise a set of mechanisms that may contribute to dissipate magnetic and kinetic energy: Magnetohydrodynamic instabilities or jet-obstacle interactions trigger shocks, shearing and mixing, which are plausible scenarios for particle acceleration. I also derive an expression for the expected distance in which the entrainment by stellar winds starts to be relevant, which is applicable to FRI jets. Finally, I discuss the differences in the evolutionary scenarios and the main dissipative mechanisms that take place in extragalactic and microquasar jets.



rate research

Read More

We consider a two-parameter family of cylindrical force-free equilibria, modeled to match numerical simulations of relativistic force-free jets. We study the linear stability of these equilibria, assuming a rigid impenetrable wall at the outer cylindrical radius R_j. We find that equilibria in which the Lorentz factor gamma(R) increases monotonically with increasing radius R are stable. On the other hand, equilibria in which gamma(R) reaches a maximum value at an intermediate radius and then declines to a smaller value gamma_j at R_j are unstable. The most rapidly growing mode is an m=1 kink instability which has a growth rate ~ (0.4 / gamma_j) (c/R_j). The e-folding length of the equivalent convected instability is ~2.5 gamma_j R_j. For a typical jet with an opening angle theta_j ~ few / gamma_j, the mode amplitude grows weakly with increasing distance from the base of the jet, much slower than one might expect from a naive application of the Kruskal-Shafranov stability criterion.
Current observations have shown that astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three AGN jet models in $2.5D$ of which two have been given a radial structure. The first model is a homogeneous jet, the only model that doesnt carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon.
The use of Z-pinch facilities makes it possible to carry out well-controlled and diagnosable laboratory experiments to study laboratory jets with scaling parameters close to those of the jets from young stars. This makes it possible to observe processes that are inaccessible to astronomical observations. Such experiments are carried out at the PF-3 facility (plasma focus, Kurchatov Institute), in which the emitted plasma emission propagates along the drift chamber through the environment at a distance of one meter. The paper presents the results of experiments with helium, in which a successive release of two ejections was observed. An analysis of these results suggests that after the passage of the first supersonic ejection, a region with a low concentration is formed behind it, the so-called vacuum trace, due to which the subsequent ejection practically does not experience environmental resistance and propagates being collimated. The numerical modeling of the propagation of two ejections presented in the paper confirms this point of view. Using scaling laws and appropriate numerical simulations of astrophysical ejections, it is shown that this effect can also be significant for the jets of young stars.
432 - Davide Lazzati 2021
The association of GRB170817A with GW170817 has confirmed the long-standing hypothesis that binary neutron star (BNS) mergers are the progenitors of at least some short gamma-ray bursts (SGRBs). This connection has ushered in an era in which broadband observations of SGRBs, together with measurements of the time delay between the gravitational waves and the electromagnetic radiation, allow to probe the properties of the emitting outflow and its engine to an unprecedented detail. Since the structure of the radiating outflow is molded by the interaction of a relativistic jet with the binary ejecta, it is of paramount importance to study the system in a realistic setting. Here we present a three-dimensional hydrodynamic simulation of a relativistic jet propagating in the ejecta of a BNS merger, which were computed with a general relativistic magnetohydrodynamic simulation. We find that the jets centroid oscillates around the axis of the system, due to inhomogeneities encountered in the propagation. These oscillations allow the jet to find the path of least resistance and travel faster than an identical jet in smooth ejecta. In our setup the breakout time is ~0.6 sec, comparable to the expected central engine duration in SGRBs and possibly a non-negligible fraction of the total delay between the gravitational and gamma-ray signals. Our simulation also shows that energy is carried in roughly equal amounts by the jet and by the cocoon, and that about 20 per cent of the injected energy is transferred to the ejecta via mechanical work.
There are several methods to calculate the radiative and kinetic power of relativistic jets, but their results can differ by one or two orders of magnitude. Therefore, it is necessary to perform a calibration of the jet power, to understand the reasons for these differences (whether wrong hypotheses or intrinsic source variability), and if it is possible to converge to a reliable measurement of this physical quantity. We present preliminary results of a project aimed at calibrating the power of relativistic jets in active galactic nuclei (AGN) and X-ray binaries (XRB). We started by selecting all the AGN associations with known redshift in the Fourth Fermi LAT Gamma-Ray Catalog (4FGL). We then calculated the radiative and/or kinetic powers from available data or we extracted this information from literature. We compare the values obtained for overlapping samples and highlight early conclusions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا