Do you want to publish a course? Click here

Triggering nuclear and galaxy activity in the Bullet cluster

96   0   0.0 ( 0 )
 Added by Simonetta Puccetti
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The analysis of the cluster environment is a valuable instrument to investigate the origin of AGN and star-forming galaxies gas fuelling and trigger mechanisms. To this purpose, we present a detailed analysis of the point-like X-ray sources in the Bullet cluster field. Thanks to $sim600$ ks Chandra observations, we produced a catalogue of 381 X-ray point sources up to a distance of $sim$1.5 virial radius and with flux limits $sim1times10^{-16}$ and $sim8times10^{-16}$ erg cm$^{-2}$ s$^{-1}$ in the 0.5-2 keV and 2-10 keV bands, respectively. We found a strong (up to a factor 1.5-2) and significant ($ge$4$sigma$) over-density in the full region studied $0.3R_{200}<R<1.5R_{200}$. We identified optical and infrared counterparts for $sim$84% and $sim$48% of the X-ray sources, respectively. We obtained new spectroscopic redshifts for 106 X-ray sources. Spectroscopic and photometric redshifts of optical and infrared sources have been also collected, and these sources were used as ancillary samples. We find that the over-density in the region $0.3R_{200}<R<R_{200}$ is likely due to X-ray AGN (mostly obscured) and star-forming galaxies both associated to the cluster, while in the more external region it is likely mostly due to background AGN. The fraction of cluster galaxies hosting an X-ray detected AGN is 1.0$pm$0.4$%$, nearly constant with the radius, a fraction similar to that reported in other clusters of galaxies at similar redshift. The fraction of X-ray bright AGN (L$_{2-10keV}$$>$10$^{43}$ ergs s$^{-1}$) in the region $0.3R_{200}<R<R_{200}$ is $0.5^{+0.6}_{-0.2}$$%$, higher than that in other clusters at similar redshift and more similar to the AGN fraction in the field. Finally, the spatial distributions of AGN and star-forming galaxies, selected also thanks to their infrared emission, appear similar, thus suggesting that both are triggered by the same mechanism.



rate research

Read More

111 - Bililign T. Dullo 2018
We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with $HST$ and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxys central structure and its connection to the nuclear activity. We decomposed the composite $HST$ + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The $HST$ images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit $M_{rm def}$ in the spheroid, scoured by SMBH binaries with final mass $M_{rm BH}$ such that $M_{rm def}/M_{rm BH} sim 1.3 - 3.4$. We propose a three-phase formation scenario for NGC 5322 where a few ($2-7$) dry major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly onto the AGN, powering the radio core with a brightness temperature of $T_{rm B,core} sim 4.5 times 10^{7}$ K and the low-power radio jets ($P_{rm jets}sim 7.04 times 10^{20}$ W Hz$^{-1}$) which extend $sim 1.6$ kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.
We present Atacama Large Millimeter/submillimeter Array measurements of the `Cosmic Seagull, a strongly magnified galaxy at z=2.7779 behind the Bullet Cluster. We report CO(3-2) and continuum 344~$mu$m (rest-frame) data at one of the highest differential magnifications ever recorded at submillimeter wavelengths ($mu$ up to ~50), facilitating a characterization of the kinematics of a rotational curve in great detail (at ~620 pc resolution in the source plane). We find no evidence for a decreasing rotation curve, from which we derive a dynamical mass of ($6.3pm0.7)times10^{10} M_{odot}$ within $r = 2.6pm0.1$ kpc. The discovery of a third, unpredicted, image provides key information for a future improvement of the lensing modeling of the Bullet Cluster and allows a measure of the stellar mass, $1.6^{+1.9}_{-0.86}times10^{10} M_{odot}$, unaffected by strong differential magnification. The baryonic mass is is expected to be dominated by the molecular gas content ($f_{gas} leq 80 pm 20$ %) based on an $M_{H_2}$ mass estimated from the difference between dynamical and stellar masses. The star formation rate is estimated via the spectral energy distribution ($SFR = 190 pm 10 M_{odot}/yr$), implying a molecular gas depletion time of $0.25pm0.08$ Gyr.
We model the triggering of Active Galactic Nuclei (AGN) in galaxy clusters using the semi- analytic galaxy formation model SAGE (?). We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with that of AGN and galaxies with intense star formation from a sample of low-redshift, relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if $2.5times10^{-14} < P_{ram} < 2.5times10^{-13}$ Pa and $P_{ram} > 2P_{internal}$; this is consistent with expectations from hydrodynamical simulations of ram-pressure induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.
We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z 850LP-band dropout behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 {AA} at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 pm 0.003. The integrated line flux is f = (0.7 pm 0.1 pm 0.3) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 pm 0.2 the intrinsic (corrected for lensing) flux is f^int = (0.23 pm 0.03 pm 0.10 pm 0.02) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int(H_160W)=27.57 pm 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.
While there are many ways to identify substructures in galaxy clusters using different wavelengths, each technique has its own caveat. In this paper, we conduct a detailed substructure search and dynamical state characterisation of Abell 2399, a galaxy cluster in the local Universe ($z sim 0.0579$), by performing a multi-wavelength analysis and testing the results through hydro-dynamical simulations. In particular, we apply a Gaussian Mixture Model to the spectroscopic data from SDSS, WINGS, and Omega WINGS Surveys to identify substructures. We further use public textit{XMM-Newton} data to investigate the intracluster medium (ICM) thermal properties, creating temperature, metallicity, entropy, and pressure maps. Finally, we run hydro-dynamical simulations to constrain the merger stage of this system. The ICM is very asymmetrical and has regions of temperature and pressure enhancement that evidence a recent merging process. The optical substructure analysis retrieves the two main X-ray concentrations. The temperature, entropy, and pressure are smaller in the secondary clump than in the main clump. On the other hand, its metallicity is considerably higher. This result can be explained by the scenario found by the hydro-dynamical simulations where the secondary clump passed very near to the centre of the main cluster possibly causing the galaxies of that region to release more metals through the increase of ram-pressure stripping.16
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا