No Arabic abstract
We perform an analysis of the single white dwarf and the double degenerate binary populations in the solar neighbourhood following a population synthesis approach to investigate the effects of unresolved double degenerates in the white dwarf luminosity function. We consider all unresolved synthetic binaries to be associated with fictitious effective temperatures and surface gravities that are obtained in the same way as if these objects were observed as single point sources. We evaluate the effects of unresolved double white dwarfs assuming that the synthetic samples are observed both by the magnitude-limited SDSS and the volume-limited Gaia surveys, the latter limited to a distance of no more than 100pc. We find that, for our standard model, the impact of unresolved double degenerates in the white dwarf luminosity function derived from the Gaia sample is nearly negligible. Unresolved double degenerates are hence expected to have no effect on the age of the Galactic disc, nor on the star formation history from this population. However, for the SDSS sample, the effect of unresolved double degenerates is significant at the brighter bins (Mbol<6.5 mag), with the fraction of such systems reaching ~40% of the total white dwarf population at Mbol=6 mag. This indicates unresolved double degenerates may influence the constraints on the star formation history derived from the SDSS white dwarf sample.
We analyze the effect of the sedimentation of $^{22}$Ne on the local white dwarf luminosity function by studying scenarios under different Galactic metallicity models. We make use of an up-to-date population synthesis code based on Monte Carlo techniques to derive the synthetic luminosity function. Constant solar metallicity models are not able to simultaneously reproduce the peak and cut-off of the white dwarf luminosity function. The extra release of energy due to $^{22}$Ne sedimentation piles up more objects in brighter bins of the faint end of the luminosity function. The contribution of a single burst thick disk population increases the number of stars in the magnitude interval centered around $M_{rm bol}=15.75$. Among the metallicity models studied, the one following a Twarogs profile is disposable. Our best fit model was obtained when a dispersion in metallicities around the solar metallicity value is considered along with a $^{22}$Ne sedimentation model, a thick disk contribution and an age of the thin disk of $8.8pm0.2$ Gyr. Our population synthesis model is able to reproduce the local white dwarf luminosity function with a high degree of precision when a dispersion in metallicities around the solar value model is adopted. Although the effects of $^{22}$Ne sedimentation are only marginal and the contribution of a thick disk population is minor, both of them help in better fitting the peak and the cut-off regions of the white dwarf luminosity function.
Extremely low-mass white dwarfs (ELM WDs) are helium WDs with a mass less than $sim$$0.3rm;M_odot$. Most ELM WDs are found in double degenerates (DDs) in the ELM Survey led by Brown and Kilic. These systems are supposed to be significant gravitational-wave sources in the mHz frequency. In this paper, we firstly analyzed the observational characteristics of ELM WDs and found that there are two distinct groups in the ELM WD mass and orbital period plane, indicating two different formation scenarios of such objects, i.e. a stable Roche lobe overflow channel (RL channel) and common envelope ejection channel (CE channel). We then systematically investigated the formation of ELM WDs in DDs by a combination of detailed binary evolution calculation and binary population synthesis. Our study shows that the majority of ELM WDs with mass less than $0.22rm;M_odot$ are formed from the RL channel. The most common progenitor mass in this way is in the range of $1.15-1.45rm;M_odot$ and the resulting ELM WDs have a peak around $0.18rm;M_odot$ when selection effects are taken into account, consistent with observations. The ELM WDs with a mass larger than $0.22rm;M_odot$ are more likely to be from the CE channel and have a peak of ELM WD mass around $0.25rm;M_odot$ which needs to be confirmed by future observations. By assuming a constant star formation rate of 2$rm;M_odot yr^{-1}$ for a Milky Way-like galaxy, the birth rate and local density are $5times10^{-4}rm;yr^{-1}$ and $1500rm;kpc^{-3}$, respectively, for DDs with an ELM WD mass less than $0.25rm;M_odot$.
We present optical spectra of 144 white dwarfs detected in the Montreal-Cambridge-Tololo (MCT) colorimetric survey, including 120 DA, 12 DB, 4 DO, 1 DQ, and 7 DC stars. We also perform a model atmosphere analysis of all objects in our sample using the so-called spectroscopic technique, or the photometric technique in the case of DC white dwarfs. The main objective of this paper is to contribute to the ongoing effort of confirming spectroscopically all white dwarf candidates in the Gaia survey, in particular in the southern hemisphere. All our spectra are made available in the Montreal White Dwarf Database.
We report on the white dwarf cooling sequence of the old globular cluster NGC 6752, which is chemically complex and hosts a blue horizontal branch. This is one of the last globular cluster white dwarf (WD) cooling sequences accessible to imaging by the Hubble Space Telescope. Our photometry and completeness tests show that we have reached the peak of the luminosity function of the WD cooling sequence, at a magnitude m_F606W=29.4+/-0.1, which is consistent with a formal age of ~14Gyr. This age is also consistent with the age from fits to the main-sequence turnoff (13-14Gyr), reinforcing our conclusion that we observe the expected accumulation of white dwarfs along the cooling sequence.
A sample of white dwarfs is selected from SDSS DR3 imaging data using their reduced proper motions, based on improved proper motions from SDSS plus USNO-B combined data. Numerous SDSS and followup spectra (Kilic et al. 2005) are used to quantify completeness and contamination of the sample; kinematic models are used to understand and correct for velocity-dependent selection biases. A luminosity function is constructed covering the range 7 < M_bol < 16, and its sensitivity to various assumptions and selection limits is discussed. The white dwarf luminosity function based on 6000 stars is remarkably smooth, and rises nearly monotonically to M_bol = 15.3. It then drops abruptly, although the small number of low-luminosity stars in the sample and their unknown atmospheric composition prevent quantitative conclusions about this decline. Stars are identified that may have high tangential velocities, and a preliminary luminosity function is constructed for them.