No Arabic abstract
In this paper, we introduce a generalization of G-opers for arbitrary parabolic subgroups P<G. For parabolic subgroups associated to even nilpotents, we parameterize (G,P)-opers by an object generalizing the base of the Hitchin fibration. In particular, we describe families of opers associated to higher Teichmuller spaces.
Every conic symplectic singularity admits a universal Poisson deformation and a universal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by showing that every such variety admits a universal equivariant Poisson deformation and universal equivariant quantization with respect to any group acting on it by $mathbb{C}^times$-equivariant Poisson automorphisms. We go on to study these definitions in the context of nilpotent Slodowy slices. First we give a complete description of the cases in which the finite $W$-algebra is the universal filtered quantization of the slice, building on the work of Lehn--Namikawa--Sorger. This leads to a near-complete classification of the filtered quantizations of nilpotent Slodowy slices. The subregular slices in non-simply-laced Lie algebras are especially interesting: with some minor restrictions on Dynkin type we prove that the finite $W$-algebra is the universal equivariant quantization with respect to the Dynkin automorphisms coming from the unfolding of the Dynkin diagram. This can be seen as a non-commutative analogue of Slodowys theorem. Finally we apply this result to give a presentation of the subregular finite $W$-algebra in type B as a quotient of a shifted Yangian.
We provide examples of an explicit submanifold in Bridgeland stabilities space of a local Calabi-Yau, and propose a new variant of definition of stabilities on a triangulated category, which we call a real variation of stability conditions. We discuss its relation to Bridgelands definition; the main theorem provides an illustration of such a relation. We also state a conjecture by the second author and Okounkov relating this structure to quantum cohomology of symplectic resolutions and establish its validity in some special cases. More precisely, let X be the standard resolution of a transversal slice to an adjoint nilpotent orbit of a simple Lie algebra over C. An action of the affine braid group on the derived category of coherent sheaves on X and a collection of t-structures on this category permuted by the action have been constructed in arXiv:1101.3702 and arXiv:1001.2562 respectively. In this note we show that the t-structures come from points in a certain connected submanifold in the space of Bridgeland stability conditions. The submanifold is a covering of a submanifold in the dual space to the Grothendieck group, and the affine braid group acts by deck transformations. In the special case when dim (X)=2 a similar (in fact, stronger) result was obtained in arXiv:math/0508257.
In this paper we prove that for Gromov-Witten theory of $P^1$ orbifolds of ADE type the genus-2 G-function introduced by B. Dubrovin, S. Liu, and Y. Zhang vanishes. Together with our results in [LW], this completely solves the main conjecture in their paper [DLZ]. In the process, we also found a sufficient condition for the vanishing of the genus-2 G-function which is weaker than the condition given in our previous paper [LW].
The moduli space of solutions to Nahms equations of rank (k,k+j) on the circle, and hence, of SU(2) calorons of charge (k,j), is shown to be equivalent to the moduli of holomorphic rank 2 bundles on P^1xP^1 trivialized at infinity with c_2=k and equipped with a flag of degree j along P^1x{0}. An explicit matrix description of these spaces is given by a monad construction
We show that if $Omega$ is a connection $1$-form on a vector bundle $eta$ over a closed $n$-dimensional Riemannian manifold $mathcal{M}$ with $L^p$-regularity ($p>n$) and smooth curvature $2$-form $mathscr{F}$, then it can be approximated in the $L^p$-norm by smooth connections of the same curvature, provided that $|Omega|_{L^p(mathcal{M})}$ is smaller than a uniform constant depending only on $p$ and $mathcal{M}$.