Graded quiver varieties and singularities of normalized R-matrices for fundamental modules


Abstract in English

We present a simple unified formula expressing the denominators of the normalized R-matrices between the fundamental modules over the quantum loop algebras of type ADE. It has an interpretation in terms of representations of the Dynkin quivers and can be proved in a unified way using the geometry of graded quiver varieties. As a by-product, we obtain a geometric interpretation of Kang-Kashiwara-Kims generalized quantum affine Schur-Weyl duality functor when it arises from a family of fundamental modules. We also study several cases when the graded quiver varieties are isomorphic to the graded nilpotent orbits of type A.

Download