Quantum Lower Bounds for 2D-Grid and Dyck Language


Abstract in English

We show quantum lower bounds for two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most $k$. It has been known that, for any $k$, $tilde{O}(sqrt{n})$ queries suffice, with a $tilde{O}$ term depending on $k$. We prove a lower bound of $Omega(c^k sqrt{n})$, showing that the complexity of this problem increases exponentially in $k$. This is interesting as a representative example of star-free languages for which a surprising $tilde{O}(sqrt{n})$ query quantum algorithm was recently constructed by Aaronson et al. Second, we consider connectivity problems on directed/undirected grid in 2 dimensions, if some of the edges of the grid may be missing. By embedding the balanced parentheses problem into the grid, we show a lower bound of $Omega(n^{1.5-epsilon})$ for the directed 2D grid and $Omega(n^{2-epsilon})$ for the undirected 2D grid. The directed problem is interesting as a black-box model for a class of classical dynamic programming strategies including the one that is usually used for the well-known edit distance problem. We also show a generalization of this result to more than 2 dimensions.

Download