Do you want to publish a course? Click here

How to superize the notion of Kaehler manifold

140   0   0.0 ( 0 )
 Added by Dimitry Leites
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The definition of Kaehler manifold is superized. In the super setting, it admits a continuous parameter, unlike their analogs on manifolds. This parameter runs the same singular supervariety of parameters that parameterize deformations of the Schouten bracket (a.k.a. Buttin bracket, a.k.a. anti-bracket) considered as deformations of the Lie superalgebra structure given by the bracket. The same idea yields definitions of sever



rate research

Read More

In the present paper, we investigate geometric properties of Clairaut anti-invariant submersions whose total space is a nearly Kaehler manifold. We obtain condition for Clairaut anti-invariant submersion to be a totally geodesic map and also study Clairaut anti-invariant submersions with totally umbilical fibers. In the last, we introduce illustrative example.
134 - Mukut Mani Tripathi 2008
In a Riemannian manifold, the existence of a new connection is proved. In particular cases, this connection reduces to several symmetric, semi-symmetric and quarter-symmetric connections; even some of them are not introduced so far. We also find formula for curvature tensor of this new connection.
82 - Roman M. Fedorov 2007
Frobenius manifold structures on the spaces of abelian integrals were constructed by I. Krichever. We use D-modules, deformation theory, and homological algebra to give a coordinate-free description of these structures. It turns out that the tangent sheaf multiplication has a cohomological origin, while the Levi-Civita connection is related to 1-dimensional isomonodromic deformations.
239 - M. Brozos-Vazquez , P. Gilkey , 2009
We show that every Kaehler algebraic curvature tensor is geometrically realizable by a Kaehler manifold of constant scalar curvature. We also show that every para-Kaehler algebraic curvature tensor is geometrically realizable by a para-Kaehler manifold of constant scalar curvature
How to calculate the exponential of matrices in an explicit manner is one of fundamental problems in almost all subjects in Science. Especially in Mathematical Physics or Quantum Optics many problems are reduced to this calculation by making use of some approximations whether they are appropriate or not. However, it is in general not easy. In this paper we give a very useful formula which is both elementary and getting on with computer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا