Do you want to publish a course? Click here

Coexistence of Magnetic Orders in Two-Dimensional Magnet CrI$_3$

434   0   0.0 ( 0 )
 Added by Yong-Tao Cui
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic properties in two-dimensional van der Waals materials depend sensitively on structure. CrI3, as an example, has been recently demonstrated to exhibit distinct magnetic properties depending on the layer thickness and stacking order. Bulk CrI3 is ferromagnetic (FM) with a Curie temperature of 61 K and a rhombohedral layer stacking, while few-layer CrI3 has a layered antiferromagnetic (AFM) phase with a lower ordering temperature of 45 K and a monoclinic stacking. In this work, we use cryogenic magnetic force microscopy to investigate CrI3 flakes in the intermediate thickness range (25 - 200 nm) and find that the two types of magnetic orders hence the stacking orders can coexist in the same flake, with a layer of ~13 nm at each surface being in the layered AFM phase similar to few-layer CrI3 and the rest in the bulk FM phase. The switching of the bulk moment proceeds through a remnant state with nearly compensated magnetic moment along the c-axis, indicating formation of c-axis domains allowed by a weak interlayer coupling strength in the rhombohedral phase. Our results provide a comprehensive picture on the magnetism in CrI3 and point to the possibility of engineering magnetic heterostructures within the same material.



rate research

Read More

The recent discovery of 2D magnets has revealed various intriguing phenomena due to the coupling between spin and other degree of freedoms (such as helical photoluminescence, nonreciprocal SHG). Previous research on the spin-phonon coupling effect mainly focuses on the renormalization of phonon frequency. Here we demonstrate that the Raman polarization selection rules of optical phonons can be greatly modified by the magnetic ordering in 2D magnet CrI$_3$. For monolayer samples, the dominant A$rm_{1g}$ peak shows abnormally high intensity in the cross polarization channel at low temperature, which is forbidden by the selection rule based on the lattice symmetry. While for bilayer, this peak is absent in the cross polarization channel for the layered antiferromagnetic (AFM) state and reappears when it is tuned to the ferromagnetic (FM) state by an external magnetic field. Our findings shed light on exploring the emergent magneto-optical effects in 2D magnets.
205 - Fei Xue , Paul M. Haney 2021
Spin-orbit torque enables electrical control of the magnetic state of ferromagnets or antiferromagnets. In this work we consider the spin-orbit torque in the 2-d Van der Waals antiferromagnetic bilayer CrI$_3$, in the $n$-doped regime. In the purely antiferromagnetic state, two individually inversion-symmetry broken layers of CrI$_3$ form inversion partners, like the well-studied CuMnAs and Mn$_2$Au. However, the exchange and anisotropy energies are similar in magnitude, unlike previously studied antiferromagnets, which leads to qualitatively different behaviors in this material. Using a combination of first-principles calculations of the spin-orbit torque and an analysis of the ensuing spin dynamics, we show that the deterministic electrical switching of the Neel vector is the result of dampinglike spin-orbit torque, which is staggered on the magnetic sublattices.
The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magnetic order to optical modulation and data storage technologies. Here, we demonstrate a new magneto-optical effect, namely, the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI$_3$). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A$_{1g}$ phonon mode due to the emergence of ferromagnetic order. The linearly polarized, inelastically scattered light rotates by ~40$^o$, more than two orders of magnitude larger than the rotation from MOKE under the same experimental conditions. In CrI$_3$ bilayers, we show that the same A$_{1g}$ phonon mode becomes Davydov-split into two modes of opposite parity, exhibiting divergent selection rules that depend on inversion symmetry and the underlying magnetic order. By switching between the antiferromagnetic states and the fully spin-polarized states with applied magnetic and electric fields, we demonstrate the magnetoelectrical control over their selection rules. Our work underscores the unique opportunities provided by 2D magnets for controlling the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics.
The recently discovered two-dimensional (2D) magnetic insulator CrI$_3$ is an intriguing case for basic research and spintronic applications since it is a ferromagnet in the bulk, but an antiferromagnet in bilayer form, with its magnetic ordering amenable to external manipulations. Using first-principles quantum transport approach, we predict that injecting unpolarized charge current parallel to the interface of bilayer-CrI$_3$/monolayer-TaSe$_2$ van der Waals heterostructure will induce spin-orbit torque (SOT) and thereby driven dynamics of magnetization on the first monolayer of CrI$_3$ in direct contact with TaSe$_2$. By combining calculated complex angular dependence of SOT with the Landau-Lifshitz-Gilbert equation for classical dynamics of magnetization, we demonstrate that current pulses can switch the direction of magnetization on the first monolayer to become parallel to that of the second monolayer, thereby converting CrI$_3$ from antiferromagnet to ferromagnet while not requiring any external magnetic field. We explain the mechanism of this reversible current-driven nonequilibrium phase transition by showing that first monolayer of CrI$_3$ carries current due to evanescent wavefunctions injected by metallic transition metal dichalcogenide TaSe$_2$, while concurrently acquiring strong spin-orbit coupling (SOC) via such proximity effect, whereas the second monolayer of CrI$_3$ remains insulating. The transition can be detected by passing vertical read current through the vdW heterostructure, encapsulated by bilayer of hexagonal boron nitride and sandwiched between graphite electrodes, where we find tunneling magnetoresistance of $simeq 240$%.
Gate-induced magnetic switching in bilayer CrI$_3$ has opened new ways for the design of novel low-power magnetic memories based on van der Waals heterostructures. The proposed switching mechanism seems to be fully dominated by electrostatic doping. Here we explain, by first-principle calculations, the ferromagnetic transition in doped bilayer CrI$_3$. For the case of a very small electron doping, our calculations predict the formation of magnetic polarons (ferrons, fluctuons) where the electron is self-locked in a ferromagnetic droplet in an antiferromagnetic insulating matrix. The self-trapping of holes is impossible, at least, within our approximation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا