Do you want to publish a course? Click here

Strong-field molecular alignment mediated by nonadiabatic charge localization

107   0   0.0 ( 0 )
 Added by Dmitri Romanov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new mode of effective interaction of molecular rotational degrees of freedom with an intense, nonresonant, ultrashort laser pulse is explored. Transient nonadiabatic charge redistribution (TNCR) in larger molecules or molecular ions causes impulsive-torque interaction that replaces the traditional mechanism of molecular alignment based on perturbative interaction of the laser field with electronic subsystem as manifested in linear anisotropic polarizability or hyperpolarizability. We explore this new alignment mechanism on a popular generic model of a tight-binding diatomic molecule. We consider the case of rotational wavepacket formation when a molecule is initially in the ground rotational state. The rotational wavepacket emerging from the TNCR interaction consists of states with higher rotational quantum numbers, in comparison with the anisotropic-polarizability case, and the after-pulse alignment oscillations are out-of-phase with those resulting from the traditional interaction. The TNCR interaction mode is expected to play a major role when a strong laser field actually causes extensive nonresonant excitation and/or ionization of a molecule.

rate research

Read More

The existence of electronic coherence can fundamentally change the scenario of nonlinear interaction of light with quantum systems such as atoms and molecules, which, however, has escaped from observation in the investigations of strong field nonlinear optics in the past several decades. Here, we report on the generation of electronic quantum coherence by strong field ionization of nitrogen molecules in an intense 800 nm laser field. The coherence is experimentally revealed by observing a resonant four-wave mixing process in which the two pump pulses centered at 800 nm and 1580 nm wavelengths are temporally separated from each other. The experimental observation is further reproduced by calculating the nonlinear polarization response of N_2^+ ions using a three-level quantum model. Our result suggests that strong field ionization provides a unique approach to generating a fully coherent molecular wavepacket encapsulating the rotational, vibrational, and electronic states.
We uncover that the breaking point of the PT-symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off-diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which PT-symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and statistically averaged width of the output pattern substantially increases. Beyond the symmetry-breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both, broken and unbroken PT-symmetry.
We consider deflection of polarizable molecules by inhomogeneous optical fields, and analyze the role of molecular orientation and rotation in the scattering process. It is shown that molecular rotation induces spectacular rainbow-like features in the distribution of the scattering angle. Moreover, by preshaping molecular angular distribution with the help of short and strong femtosecond laser pulses, one may efficiently control the scattering process, manipulate the average deflection angle and its distribution, and reduce substantially the angular dispersion of the deflected molecules. We provide quantum and classical treatment of the deflection process. The effects of strong deflecting field on the scattering of rotating molecules are considered by the means of the adiabatic invariants formalism. This new control scheme opens new ways for many applications involving molecular focusing, guiding and trapping by optical and static fields.
Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong electron interaction offers a fast and efficient lever to manipulate their properties with light, creating promising potential for next-generation electronics. However, the underlying dynamics is a fast and intricate interplay of polarization and screening effects, which is poorly understood. It is hidden below the femtosecond timescale of electronic thermalization, which follows the light-induced excitation. Here, we investigate the many-body electron dynamics in transition metals before thermalization sets in. We combine the sensitivity of intra-shell transitions to screening effects with attosecond time resolution to uncover the interplay of photo-absorption and screening. First-principles time-dependent calculations allow us to assign our experimental observations to ultrafast electronic localization on d-orbitals. The latter modifies the whole electronic structure as well as the collective dynamic response of the system on a timescale much faster than the light-field cycle. Our results demonstrate a possibility for steering the electronic properties of solids prior to electron thermalization, suggesting that the ultimate speed of electronic phase transitions is limited only by the duration of the controlling laser pulse. Furthermore, external control of the local electronic density serves as a fine tool for testing state-of-the art models of electron-electron interactions. We anticipate our study to facilitate further investigations of electronic phase transitions, laser-metal interactions and photo-absorption in correlated electron systems on its natural timescale.
Generation of laser-like narrow bandwidth emissions from nitrogen molecular ions generated in intense near- and mid-infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon as well as the potential application of such an effect in atmospheric spectroscopic sensing. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wavepackets of nitrogen molecular ions generated in mid-infrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P- and R-branch rotational transition lines between the upper and lower electronic states. The results show that in the near-resonant conditions, stimulated Raman amplification can efficiently occur which converts the broad bandwidth ultrashort probe pulse into the narrow bandwidth laser-like beam. Our finding provides an insight into the physical mechanism of strong field induced lasing actions in atmospheric environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا