Do you want to publish a course? Click here

The AGILE Data Center and its Legacy

75   0   0.0 ( 0 )
 Added by Carlotta Pittori
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of the main AGILE Data Center activities and architecture. AGILE is a space mission of the Italian Space Agency (ASI) in joint collaboration with INAF, INFN, CIFS, and with the participation of several Italian space industry companies. The AGILE satellite was launched on April 23, 2007, and is devoted to the observation of the gamma-ray Universe in the 30 MeV -- 50 GeV energy range, with simultaneous X-ray imaging capability in the 18-60 keV band. The AGILE Data Center, part of the ASI multi-mission Space Science Data Center (SSDC, previously known as ASDC) is in charge of all the scientific operations: data management, archiving, distribution of AGILE data and scientific software, and user support. Thanks to its sky monitoring capability and fast ground segment alert system, AGILE is substantially improving our knowledge of the gamma-ray sky, and provides a crucial contribution to multimessenger follow-up of gravitational waves and neutrinos

rate research

Read More

93 - Tamas Budavari 2012
Object cross-identification in multiple observations is often complicated by the uncertainties in their astrometric calibration. Due to the lack of standard reference objects, an image with a small field of view can have significantly larger errors in its absolute positioning than the relative precision of the detected sources within. We present a new general solution for the relative astrometry that quickly refines the World Coordinate System of overlapping fields. The efficiency is obtained through the use of infinitesimal 3-D rotations on the celestial sphere, which do not involve trigonometric functions. They also enable an analytic solution to an important step in making the astrometric corrections. In cases with many overlapping images, the correct identification of detections that match together across different images is difficult to determine. We describe a new greedy Bayesian approach for selecting the best object matches across a large number of overlapping images. The methods are developed and demonstrated on the Hubble Legacy Archive, one of the most challenging data sets today. We describe a novel catalog compiled from many Hubble Space Telescope observations, where the detections are combined into a searchable collection of matches that link the individual detections. The matches provide descriptions of astronomical objects involving multiple wavelengths and epochs. High relative positional accuracy of objects is achieved across the Hubble images, often sub-pixel precision in the order of just a few milli-arcseconds. The result is a reliable set of high-quality associations that are publicly available online.
101 - Sebastien Foucaud 2012
Founded in 2010, the Taiwan Extragalactic Astronomical Data Center (TWEA-DC) has for goal to propose access to large amount of data for the Taiwanese and International community, focusing its efforts on Extragalactic science. In continuation with individual efforts in Taiwan over the past few years, this is the first steppingstone towards the building of a National Virtual Observatory. Taking advantage of our own fast indexing algorithm (BLINK), based on a octahedral meshing of the sky coupled with a very fast kd-tree and a clever parallelization amongst available resources, TWEA-DC will propose from spring 2013 a service of on-the-fly matching facility, between on-site and user-based catalogs. We will also offer access to public and private raw and reducible data available to the Taiwanese community. Finally, we are developing high-end on-line analysis tools, such as an automated photometric redshifts and SED fitting code (APz), and an automated groups and clusters finder (APFoF).
Astrophysics and Space Science are becoming increasingly characterised by what is now known as big data, the bottlenecks for progress partly shifting from data acquisition to data mining. Truth is that the amount and rate of data accumulation in many fields already surpasses the local capabilities for its processing and exploitation, and the efficient conversion of scientific data into knowledge is everywhere a challenge. The result is that, to a large extent, isolated data archives risk being progressively likened to data graveyards, where the information stored is not reused for scientific work. Responsible and efficient use of these large datasets means democratising access and extracting the most science possible from it, which in turn signifies improving data accessibility and integration. Improving data processing capabilities is another important issue specific to researchers and computer scientists of each field. The project presented here wishes to exploit the enormous potential opened up by information technology at our age to advance a model for a science data center in astronomy which aims to expand data accessibility and integration to the largest possible extent and with the greatest efficiency for scientific and educational use. Greater access to data means more people producing and benefiting from information, whereas larger integration of related data from different origins means a greater research potential and increased scientific impact.The project of the BSDC is preoccupied, primarily, with providing tools and solutions for the Brazilian astronomical community. It nevertheless capitalizes on extensive international experience, and is developed in cooperation with the ASI Science Data Center (ASDC), from the Italian Space Agency, granting it an essential ingredient of internationalisation. The BSDC is Virtual Observatory-compliant.
Context: AGILE is a gamma-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The gamma-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog. Aims: We present the calibration of the AGILE-GRID using in-flight data and Monte Carlo simulations, producing Instrument Response Functions (IRFs) for the effective area A_eff), Energy Dispersion Probability (EDP), and Point Spread Function (PSF), each as a function of incident direction in instrument coordinates and energy. Methods: We performed Monte Carlo simulations at different gamma-ray energies and incident angles, including background rejection filters and Kalman filter-based gamma-ray reconstruction. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate and improve the accuracy of the instrument response functions. Results: The weighted average PSFs as a function of spectra correspond well to the data for all sources and energy bands. Conclusions: Changes in the interpolation of the PSF from Monte Carlo data and in the procedure for construction of the energy-weighted effective areas have improved the correspondence between predicted and observed fluxes and spectra of celestial calibration sources, reducing false positives and obviating the need for post-hoc energy-dependent scaling factors. The new IRFs have been publicly available from the Agile Science Data Centre since November 25, 2011, while the changes in the analysis software will be distributed in an upcoming release.
AGILE is a mission of the Italian Space Agency (ASI) Scientific Program dedicated to gamma-ray astrophysics, operating in a low Earth orbit since April 23, 2007. It is designed to be a very light and compact instrument, capable of simultaneously detecting and imaging photons in the 18 keV to 60 keV X-ray energy band and in the 30 MeV{50 GeV gamma-ray energy with a good angular resolution (< 1 deg at 1 GeV). The core of the instrument is the Silicon Tracker complemented with a CsI calorimeter and a AntiCoincidence system forming the Gamma Ray Imaging Detector (GRID). Before launch, the GRID needed on-ground calibration with a tagged gamma-ray beam to estimate its performance and validate the Monte Carlo simulation. The GRID was calibrated using a tagged gamma-ray beam with energy up to 500 MeV at the Beam Test Facilities at the INFN Laboratori Nazionali di Frascati. These data are used to validate a GEANT3 based simulation by comparing the data and the Monte Carlo simulation by measuring the angular and energy resolutions. The GRID angular and energy resolutions obtained using the beam agree well with the Monte Carlo simulation. Therefore the simulation can be used to simulate the same performance on-light with high reliability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا