No Arabic abstract
We introduce a new local sparse attention layer that preserves two-dimensional geometry and locality. We show that by just replacing the dense attention layer of SAGAN with our construction, we obtain very significant FID, Inception score and pure visual improvements. FID score is improved from $18.65$ to $15.94$ on ImageNet, keeping all other parameters the same. The sparse attention patterns that we propose for our new layer are designed using a novel information theoretic criterion that uses information flow graphs. We also present a novel way to invert Generative Adversarial Networks with attention. Our method extracts from the attention layer of the discriminator a saliency map, which we use to construct a new loss function for the inversion. This allows us to visualize the newly introduced attention heads and show that they indeed capture interesting aspects of two-dimensional geometry of real images.
Deep generative models reproduce complex empirical data but cannot extrapolate to novel environments. An intuitive idea to promote extrapolation capabilities is to enforce the architecture to have the modular structure of a causal graphical model, where one can intervene on each module independently of the others in the graph. We develop a framework to formalize this intuition, using the principle of Independent Causal Mechanisms, and show how over-parameterization of generative neural networks can hinder extrapolation capabilities. Our experiments on the generation of human faces shows successive layers of a generator architecture implement independent mechanisms to some extent, allowing meaningful extrapolations. Finally, we illustrate that independence of mechanisms may be enforced during training to improve extrapolation.
We propose Differentiable Window, a new neural module and general purpose component for dynamic window selection. While universally applicable, we demonstrate a compelling use case of utilizing Differentiable Window to improve standard attention modules by enabling more focused attentions over the input regions. We propose two variants of Differentiable Window, and integrate them within the Transformer architecture in two novel ways. We evaluate our proposed approach on a myriad of NLP tasks, including machine translation, sentiment analysis, subject-verb agreement and language modeling. Our experimental results demonstrate consistent and sizable improvements across all tasks.
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution (e.g., Gaussian noises). However, such prior distribution is often independent of real data and thus may lose semantic information (e.g., geometric structure or content in images) of data. In practice, the semantic information might be represented by some latent distribution learned from data. However, such latent distribution may incur difficulties in data sampling for GANs. In this paper, rather than sampling from the predefined prior distribution, we propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data. First, we propose an LCC sampling method in LCCGAN to sample meaningful points from the latent manifold. With the LCC sampling method, we can exploit the local information on the latent manifold and thus produce new data with promising quality. Second, we propose an improved version, namely LCCGAN++, by introducing a higher-order term in the generator approximation. This term is able to achieve better approximation and thus further improve the performance. More critically, we derive the generalization bound for both LCCGAN and LCCGAN++ and prove that a low-dimensional input is sufficient to achieve good generalization performance. Extensive experiments on four benchmark datasets demonstrate the superiority of the proposed method over existing GANs.
Compositional structures between parts and objects are inherent in natural scenes. Modeling such compositional hierarchies via unsupervised learning can bring various benefits such as interpretability and transferability, which are important in many downstream tasks. In this paper, we propose the first deep latent variable model, called RICH, for learning Representation of Interpretable Compositional Hierarchies. At the core of RICH is a latent scene graph representation that organizes the entities of a scene into a tree structure according to their compositional relationships. During inference, taking top-down approach, RICH is able to use higher-level representation to guide lower-level decomposition. This avoids the difficult problem of routing between parts and objects that is faced by bottom-up approaches. In experiments on images containing multiple objects with different part compositions, we demonstrate that RICH is able to learn the latent compositional hierarchy and generate imaginary scenes.
Generative models are typically trained on grid-like data such as images. As a result, the size of these models usually scales directly with the underlying grid resolution. In this paper, we abandon discretized grids and instead parameterize individual data points by continuous functions. We then build generative models by learning distributions over such functions. By treating data points as functions, we can abstract away from the specific type of data we train on and construct models that scale independently of signal resolution. To train our model, we use an adversarial approach with a discriminator that acts on continuous signals. Through experiments on both images and 3D shapes, we demonstrate that our model can learn rich distributions of functions independently of data type and resolution.