Do you want to publish a course? Click here

Decentralized Data-Enabled Predictive Control for Power System Oscillation Damping

115   0   0.0 ( 0 )
 Added by Linbin Huang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We employ a novel data-enabled predictive control (DeePC) algorithm in voltage source converter (VSC) based high-voltage DC (HVDC) stations to perform safe and optimal wide-area control for power system oscillation damping. Conventional optimal wide-area control is model-based. However, in practice detailed and accurate parametric power system models are rarely available. In contrast, the DeePC algorithm uses only input/output data measured from the unknown system to predict the future trajectories and calculate the optimal control policy. We showcase that the DeePC algorithm can effectively attenuate inter-area oscillations even in the presence of measurement noise, communication delays, nonlinear loads and uncertain load fluctuations. We investigate the performance under different matrix structures as data-driven predictors. Furthermore, we derive a novel Min-Max DeePC algorithm to be applied independently in multiple VSC-HVDC stations to mitigate inter-area oscillations, which enables decentralized and robust optimal wide-area control. Further, we discuss how to relieve the computational burden of the Min-Max DeePC by reducing the dimension of prediction uncertainty and how to leverage disturbance feedback to reduce the conservativeness of robustification. We illustrate our results with high-fidelity, nonlinear, and noisy simulations of a four-area test system.



rate research

Read More

Data-driven control that circumvents the process of system identification by providing optimal control inputs directly from system data has attracted renewed attention in recent years. In this paper, we focus on understanding the effects of the regularization on the data-enabled predictive control (DeePC) algorithm. We provide theoretical motivation and interpretation for including a quadratic regularization term. Our analysis shows that the quadratic regularization term leads to robust and optimal solutions with regards to disturbances affecting the data. Moreover, when the input/output constraints are inactive, the quadratic regularization leads to a closed-form solution of the DeePC algorithm and thus enables fast calculations. On this basis, we propose a framework for data-driven synchronization and power regulations of power converters, which is tested by high-fidelity simulations and experiments.
We introduce a general framework for robust data-enabled predictive control (DeePC) for linear time-invariant (LTI) systems. The proposed framework enables us to obtain model-free optimal control for LTI systems based on noisy input/output data. More specifically, robust DeePC solves a min-max optimization problem to compute the optimal control sequence that is resilient to all possible realizations of the uncertainties in the input/output data within a prescribed uncertainty set. We present computationally tractable reformulations of the min-max problem with various uncertainty sets. Furthermore, we show that even though an accurate prediction of the future behavior is unattainable in practice due to inaccessibility of the perfect input/output data, the obtained robust optimal control sequence provides performance guarantees for the actually realized input/output cost. We further show that the robust DeePC generalizes and robustifies the regularized DeePC (with quadratic regularization or 1-norm regularization) proposed in the literature. Finally, we demonstrate the performance of the proposed robust DeePC algorithm on high-fidelity, nonlinear, and noisy simulations of a grid-connected power converter system.
We apply a novel data-enabled predictive control (DeePC) algorithm in grid-connected power converters to perform safe and optimal control. Rather than a model, the DeePC algorithm solely needs input/output data measured from the unknown system to predict future trajectories. We show that the DeePC can eliminate undesired oscillations in a grid-connected power converter and stabilize an unstable system. However, the DeePC algorithm may suffer from poor scalability when applied in high-order systems. To this end, we present a finite-horizon output-based model predictive control (MPC) for grid-connected power converters, which uses an N-step auto-regressive-moving-average (ARMA) model for system representation. The ARMA model is identified via an N-step prediction error method (PEM) in a recursive way. We investigate the connection between the DeePC and the concatenated PEM-MPC method, and then analytically and numerically compare their closed-loop performance. Moreover, the PEM-MPC is applied in a voltage source converter based HVDC station which is connected to a two-area power system so as to eliminate low-frequency oscillations. All of our results are illustrated with high-fidelity, nonlinear, and noisy simulations.
134 - Wei-Han Chen , Fengqi You 2019
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and forecast error may cause the temperature to deviate from the acceptable range. To inherent uncertainty in weather that affects control accuracy, this paper develops a data-driven robust model predictive control (MPC) approach for greenhouse temperature control. The dynamic model is obtained from thermal resistance-capacitance modeling derived by the Building Resistance-Capacitance Modeling (BRCM) toolbox. Uncertainty sets of ambient temperature and solar radiation are captured by support vector clustering technique, and they are further tuned for better quality by training-calibration procedure. A case study that implements the carefully chosen uncertainty sets on robust model predictive control shows that the data-driven robust MPC has better control performance compared to rule-based control, certainty equivalent MPC, and robust MPC.
In this paper, a phasor measurement unit (PMU)-based wide-area damping control method is proposed to damp the interarea oscillations that threaten the modern power system stability and security. Utilizing the synchronized PMU data, the proposed almost model-free approach can achieve an effective damping for the selected modes using a minimum number of synchronous generators. Simulations are performed to show the validity of the proposed wide-area damping control scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا