Do you want to publish a course? Click here

Spin-dimer ground state driven by consecutive charge and orbital ordering transitions in the anionic mixed-valence compound Rb$_4$O$_6$

96   0   0.0 ( 0 )
 Added by Tilen Knafli\\v{c}
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, a Verwey-type transition in the mixed-valence alkali sesquioxide Cs$_4$O$_6$ was deduced from the charge ordering of molecular peroxide O$_2^{2-}$ and superoxide O$_2^-$ anions accompanied by the structural transformation and a dramatic change in electronic conductivity [Adler et al, Sci. Adv 4, eaap7581 (2018)]. Here, we report that in the sister compound Rb$_4$O$_6$ a similar Verwey-type charge ordering transition is strongly linked to O$_2^-$ orbital and spin dynamics. On cooling, a powder neutron diffraction experiment reveals a charge ordering and a cubic-to-tetragonal transition at $T_{rm CO}=290$ K, which is followed by a further structural instability at $T_{rm s}=92$ K that involves an additional reorientation of magnetic O$_2^-$ anions. Magnetic resonance techniques supported by density functional theory computations suggest the emergence of a peculiar type of $pi^*$-orbital ordering of the magnetically active O$_2^-$ units, which promotes the formation of a quantum spin state composed of weakly coupled spin dimers. These results reveal that similarly as in 3$d$ transition metal compounds, also in in the $pi^*$ open-shell alkali sesquioxides the interplay between Jahn-Teller-like electron-lattice coupling and Kugel-Khomskii-type superexchange determines the nature of orbital ordering and the magnetic ground state.



rate research

Read More

The low-temperature electron spin resonance (ESR) spectra and the static magnetization data obtained for the stoichiometric single crystals of $beta$-Na$_{0.33}$V$_2$O$_5$ indicate that this quasi-one-dimensional mixed valence (V4+/V5+) compound demonstrates at $T_N=22$ K the phase transition into the canted antiferromagnetically ordered state. The spontaneous magnetization of $3.4times 10^{-3}$ $mu_B$ per V$^{4+}$ ion was found to be oriented along the two-fold $b$ axis of the monoclinic structure, the vector of antiferromagnetism is aligned with the $a$ axis and the Dzyaloshinsky vector is parallel to the $c$-axis. The experimental data were successfully described in the frame of the macroscopic spin dynamics and the following values for the macroscopic parameters of the spin system were obtained: the Dzyaloshinsky field $H_D=6$ kOe, the energy gaps of two branches of the spin wave spectrum $Delta_1=48$ GHz and $Delta_2=24$ GHz.
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO$_4$ to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature a.c. susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion to hold also for its sister compound YbMgGaO$_4$, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.
We have analyzed the experimental evidence of charge and orbital ordering in La0.5Sr1.5MnO4 using first principles band structure calculations. Our results suggest the presence of two types of Mn sites in the system. One of the Mn sites behaves like an Mn(3+) ion, favoring a Jahn-Teller distortion of the surrounding oxygen atoms, while the distortion around the other is not a simple breathing mode kind. Band structure effects are found to dominate the experimental spectrum for orbital and charge ordering, providing an alternate explanation for the experimentally observed results.
129 - Ch. Renner , G. Aeppli , B-G. Kim 2002
Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the colossal magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.
Ab initio calculations have been performed to unravel the origin of the recently found superlattice peaks in the trilayer nickelate La$_4$Ni$_3$O$_8$. These peaks arise from static charge ordering of Ni$^{2+}$/ Ni$^{1+}$ stripes oriented at 45$^{circ}$ to the Ni-O bonds. An insulating state originates from a combination of structural distortions and magnetic order, with the gap being formed solely within the d$_{x^2-y^2}$ manifold of states. When doped, electrons or holes would go into these states, in a similar fashion to what occurs in the cuprates. Analogous calculations suggest that checkerboard charge order should occur in the bilayer nickelate La$_3$Ni$_2$O$_6$. These results reveal a close connection between La$_4$Ni$_3$O$_8$ and La$_3$Ni$_2$O$_6$ with La$_{2-x}$Sr$_x$NiO$_4$ for x=1/3 and x=1/2, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا