High-throughput calculations are a very promising tool for screening a large number of compounds in order to discover new useful materials. Ternary intermetallic are thus investigated in the present work to find new compounds potentially interesting for thermoelectric applications. The screening of the stable non-metallic compounds required for such applications is obtained by calculating their electronic structure by DFT methods. In a first part, the study of the density of states at the Fermi level of well-known chemical elements and binary compounds allows to empirically optimize the selection criteria between metals and non-metals. In a second part, the TiNiSi structure-type is used as a case-study through the investigation of 570 possible compositions. This screening method leads to the selection of 12 possible semiconductors. For these selected compounds, their Seebeck coefficient and their lattice thermal conductivity are calculated in order to identify the most interesting one. TiNiSi, TaNiP or HfCoP could thus be compounds worth an experimental investigation.