Do you want to publish a course? Click here

The ALMaQUEST Survey: III. Scatter in the resolved star forming main sequence is primarily due to variations in star formation efficiency

65   0   0.0 ( 0 )
 Added by Sara L. Ellison
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a sample of 11,478 spaxels in 34 galaxies with molecular gas, star formation and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star formation rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (Sigma_SFR), as well as its scatter around the resolved star forming main sequence (Delta Sigma_SFR). We find that Sigma_SFR is primarily regulated by molecular gas surface density (Sigma_H2) with a secondary dependence on stellar mass surface density (Sigma_*), as expected from an `extended Kennicutt-Schmidt relation. However, Delta Sigma_SFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star forming main sequence (on kpc scales) is primarily due to changes in SFE.



rate research

Read More

The origin of the star forming main sequence ( i.e., the relation between star formation rate and stellar mass, globally or on kpc-scales; hereafter SFMS) remains a hotly debated topic in galaxy evolution. Using the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we show that for star forming spaxels in the main sequence galaxies, the three local quantities, star-formation rate surface density (sigsfr), stellar mass surface density (sigsm), and the h2~mass surface density (sigh2), are strongly correlated with one another and form a 3D linear (in log) relation with dispersion. In addition to the two well known scaling relations, the resolved SFMS (sigsfr~ vs. sigsm) and the Schmidt-Kennicutt relation (sigsfr~ vs. sigh2; SK relation), there is a third scaling relation between sigh2~ and sigsm, which we refer to as the `molecular gas main sequence (MGMS). The latter indicates that either the local gas mass traces the gravitational potential set by the local stellar mass or both quantities follow the underlying total mass distributions. The scatter of the resolved SFMS ($sigma sim 0.25$ dex) is the largest compared to those of the SK and MGMS relations ($sigma sim$ 0.2 dex). A Pearson correlation test also indicates that the SK and MGMS relations are more strongly correlated than the resolved SFMS. Our result suggests a scenario in which the resolved SFMS is the least physically fundamental and is the consequence of the combination of the SK and the MGMS relations.
We present a framework for modelling the star-formation histories of galaxies as a stochastic process. We define this stochastic process through a power spectrum density with a functional form of a broken power-law. Star-formation histories are correlated on short timescales, the strength of this correlation described by a power-law slope, $alpha$, and they decorrelate to resemble white noise over a timescale that is proportional to the timescale of the break in the power spectrum density, $tau_{rm break}$. We use this framework to explore the properties of the stochastic process that, we assume, gives rise to the log-normal scatter about the relationship between star-formation rate and stellar mass, the so-called galaxy star-forming main sequence. Specifically, we show how the measurements of the normalisation and width ($sigma_{rm MS}$) of the main sequence, measured in several passbands that probe different timescales, give a constraint on the parameters of the underlying power spectrum density. We first derive these results analytically for a simplified case where we model observations by averaging over the recent star-formation history. We then run numerical simulations to find results for more realistic observational cases. As a proof of concept, we use observational estimates of the main sequence scatter at $zsim0$ and $M_{star}approx10^{10}~M_{odot}$ measured in H$alpha$, UV+IR and the u-band, and show that combination of these point to $tau_{rm break}=178^{+104}_{-66}$ Myr, when assuming $alpha=2$. This implies that star-formation histories of galaxies lose memory of their previous activity on a timescale of $sim200$ Myr, highlighting the importance of baryonic effects that act over the dynamical timescales of galaxies.
The scatter of the spatially resolved star formation main sequence (SFMS) is investigated in order to reveal signatures about the processes of galaxy formation and evolution. We have assembled a sample of 355 nearby galaxies with spatially resolved H{alpha} and mid-infrared fluxes from the Survey for Ionized Neutral Gas in Galaxies and the Wide-field Infrared Survey Explorer, respectively. We examine the impact of various star formation rate (SFR) and stellar mass transformations on the SFMS. Ranging from 10^6 to 10^11.5 M_sun and derived from color to mass-to-light ratio methods for mid-infrared bands, the stellar masses are internally consistent within their range of applicability and inherent systematic errors; a constant mass-to-light ratio also yields representative stellar masses. The various SFR estimates show intrinsic differences and produce noticeable vertical shifts in the SFMS, depending on the timescales and physics encompassed by the corresponding tracer. SFR estimates appear to break down on physical scales below 500 pc. We also examine the various sources of scatter in the spatially resolved SFMS and find morphology does not play a significant role. We identify three unique tracks across the SFMS by individual galaxies, delineated by a critical stellar mass density of log (Sigma_M*)~7.5. Below this scale, the SFMS shows no clear trend and is likely driven by local, stochastic internal processes. Above this scale, all spatially resolved galaxies have comparable SFMS slopes but exhibit two different behaviors, resulting likely from the rate of mass accretion at the center of the galaxy.
The analytic equilibrium model for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR) and metallicity across the majority of cosmic time with a small number of parameters related to feedback. Here we aim to test this data-constrained model to quantify deviations from the mean relation between stellar mass and SFR, i.e. the star-forming galaxy main sequence (MS). We implement fluctuation in halo accretion rates parameterised from merger-based simulations, and quantify the intrinsic scatter introduced into the MS under the assumption that fluctuations in star formation follow baryonic inflow fluctuations. We predict the 1-sigma MS scatter to be ~ 0.2 - 0.25 dex over the stellar mass range 10^8 Mo to 10^11 Mo and a redshift range 0.5 < z < 3 for SFRs averaged over 100 Myr. The scatter increases modestly at z > 3, as well as by averaging over shorter timescales. The contribution from merger-induced star formation is generally small, around 5% today and 10 - 15% during the peak epoch of cosmic star formation. These results are generally consistent with available observations, suggesting that deviations from the MS primarily reflect stochasticity in the inflow rate owing to halo mergers.
The ALMaQUEST (ALMA-MaNGA QUEnching and STar formation) survey is a program with spatially-resolved $^{12}$CO(1-0) measurements obtained with the Atacama Large Millimeter Array (ALMA) for 46 galaxies selected from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) DR15 optical integral-field spectroscopic survey. The aim of the ALMaQUEST survey is to investigate the dependence of star formation activity on the cold molecular gas content at kpc scales in nearby galaxies. The sample consists of galaxies spanning a wide range in specific star formation rate (sSFR), including starburst (SB), main-sequence (MS), and green valley (GV) galaxies. In this paper, we present the sample selection and characteristics of the ALMA observations, and showcase some of the key results enabled by the combination of spatially-matched stellar populations and gas measurements. Considering the global (aperture-matched) stellar mass, molecular gas mass, and star formation rate of the sample, we find that the sSFR depends on both the star formation efficiency (SFE) and the molecular gas fraction ($f_{rm H_{2}}$), although the correlation with the latter is slightly weaker. Furthermore, the dependence of sSFR on the molecular gas content (SFE or $f_{rm H_{2}}$) is stronger than that on either the atomic gas fraction or the molecular-to-atomic gas fraction, albeit with the small HI sample size. On kpc scales, the variations in both SFE and $f_{rm H_{2}}$ within individual galaxies can be as large as 1-2 dex thereby demonstrating that the availability of spatially-resolved observations is essential to understand the details of both star formation and quenching processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا