Consider an odd-sized jury, which determines a majority verdict between two equiprobable states of Nature. If each juror independently receives a binary signal identifying the correct state with identical probability $p$, then the probability of a correct verdict tends to one as the jury size tends to infinity (Condorcet, 1785). Recently, the first two authors developed a model where jurors sequentially receive signals from an interval according to a distribution, which depends on the state of Nature and on the jurors ability, and vote sequentially. This paper shows that to mimic Condorcets binary signal, such a distribution must satisfy a functional equation related to tail-balance, that is, to the ratio $alpha(t)$ of the probability that a mean-zero random variable satisfies $X >t$ given that $|X|>t$. In particular, we show that under natural symmetry assumptions the tail-balances $alpha(t)$ uniquely determine the distribution.