Do you want to publish a course? Click here

Image2StyleGAN++: How to Edit the Embedded Images?

112   0   0.0 ( 0 )
 Added by Rameen Abdal
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose Image2StyleGAN++, a flexible image editing framework with many applications. Our framework extends the recent Image2StyleGAN in three ways. First, we introduce noise optimization as a complement to the $W^+$ latent space embedding. Our noise optimization can restore high-frequency features in images and thus significantly improves the quality of reconstructed images, e.g. a big increase of PSNR from 20 dB to 45 dB. Second, we extend the global $W^+$ latent space embedding to enable local embeddings. Third, we combine embedding with activation tensor manipulation to perform high-quality local edits along with global semantic edits on images. Such edits motivate various high-quality image editing applications, e.g. image reconstruction, image inpainting, image crossover, local style transfer, image editing using scribbles, and attribute level feature transfer. Examples of the edited images are shown across the paper for visual inspection.



rate research

Read More

We propose an efficient algorithm to embed a given image into the latent space of StyleGAN. This embedding enables semantic image editing operations that can be applied to existing photographs. Taking the StyleGAN trained on the FFHQ dataset as an example, we show results for image morphing, style transfer, and expression transfer. Studying the results of the embedding algorithm provides valuable insights into the structure of the StyleGAN latent space. We propose a set of experiments to test what class of images can be embedded, how they are embedded, what latent space is suitable for embedding, and if the embedding is semantically meaningful.
Scene Graph, as a vital tool to bridge the gap between language domain and image domain, has been widely adopted in the cross-modality task like VQA. In this paper, we propose a new method to edit the scene graph according to the user instructions, which has never been explored. To be specific, in order to learn editing scene graphs as the semantics given by texts, we propose a Graph Edit Distance Reward, which is based on the Policy Gradient and Graph Matching algorithm, to optimize neural symbolic model. In the context of text-editing image retrieval, we validate the effectiveness of our method in CSS and CRIR dataset. Besides, CRIR is a new synthetic dataset generated by us, which we will publish it soon for future use.
We present a novel approach of color transfer between images by exploring their high-level semantic information. First, we set up a database which consists of the collection of downloaded images from the internet, which are segmented automatically by using matting techniques. We then, extract image foregrounds from both source and multiple target images. Then by using image matting algorithms, the system extracts the semantic information such as faces, lips, teeth, eyes, eyebrows, etc., from the extracted foregrounds of the source image. And, then the color is transferred between corresponding parts with the same semantic information. Next we get the color transferred result by seamlessly compositing different parts together using alpha blending. In the final step, we present an efficient method of color consistency to optimize the color of a collection of images showing the common scene. The main advantage of our method over existing techniques is that it does not need face matching, as one could use more than one target images. It is not restricted to head shot images as we can also change the color style in the wild. Moreover, our algorithm does not require to choose the same color style, same pose and image size between source and target images. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different parts in the source image. Comparing with other approaches, our algorithm is much better in color blending in the input data.
90 - Asad Khan , Luo Jiang , Wei Li 2016
Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. The user can specify the correspondences of local region using scribes, which more accurately transfers the target color to the source image while smoothly preserving the boundaries, and exhibits more natural output results. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different regions in the source image. Moreover, our algorithm does not require to choose the same color style and image size between source and target images. We propose the sub-sampling to reduce the computational load. Comparing with other approaches, our algorithm is much better in color blending in the input data. Our approach preserves the other color details in the source image. Various experimental results show that our approach specifies the correspondences of local color region in source and target images. And it expresses the intention of users and generates more actual and natural results of visual effect.
It has long been hypothesized that perceptual ambiguities play an important role in aesthetic experience: a work with some ambiguity engages a viewer more than one that does not. However, current frameworks for testing this theory are limited by the availability of stimuli and data collection methods. This paper presents an approach to measuring the perceptual ambiguity of a collection of images. Crowdworkers are asked to describe image content, after different viewing durations. Experiments are performed using images created with Generative Adversarial Networks, using the Artbreeder website. We show that text processing of viewer responses can provide a fine-grained way to measure and describe image ambiguities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا