Do you want to publish a course? Click here

Efficient Saliency Maps for Explainable AI

211   0   0.0 ( 0 )
 Added by Terrell Mundhenk
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We describe an explainable AI saliency map method for use with deep convolutional neural networks (CNN) that is much more efficient than popular fine-resolution gradient methods. It is also quantitatively similar or better in accuracy. Our technique works by measuring information at the end of each network scale which is then combined into a single saliency map. We describe how saliency measures can be made more efficient by exploiting Saliency Map Order Equivalence. We visualize individual scale/layer contributions by using a Layer Ordered Visualization of Information. This provides an interesting comparison of scale information contributions within the network not provided by other saliency map methods. Using our method instead of Guided Backprop, coarse-resolution class activation methods such as Grad-CAM and Grad-CAM++ seem to yield demonstrably superior results without sacrificing speed. This will make fine-resolution saliency methods feasible on resource limited platforms such as robots, cell phones, low-cost industrial devices, astronomy and satellite imagery.



rate research

Read More

A Very recent trend has emerged to couple the notion of interpretability and adversarial robustness, unlike earlier efforts which solely focused on good interpretations or robustness against adversaries. Works have shown that adversarially trained models exhibit more interpretable saliency maps than their non-robust counterparts, and that this behavior can be quantified by considering the alignment between input image and saliency map. In this work, we provide a different perspective to this coupling, and provide a method, Saliency based Adversarial training (SAT), to use saliency maps to improve adversarial robustness of a model. In particular, we show that using annotations such as bounding boxes and segmentation masks, already provided with a dataset, as weak saliency maps, suffices to improve adversarial robustness with no additional effort to generate the perturbations themselves. Our empirical results on CIFAR-10, CIFAR-100, Tiny ImageNet and Flower-17 datasets consistently corroborate our claim, by showing improved adversarial robustness using our method. saliency maps. We also show how using finer and stronger saliency maps leads to more robust models, and how integrating SAT with existing adversarial training methods, further boosts performance of these existing methods.
The overarching goal of Explainable AI is to develop systems that not only exhibit intelligent behaviours, but also are able to explain their rationale and reveal insights. In explainable machine learning, methods that produce a high level of prediction accuracy as well as transparent explanations are valuable. In this work, we present an explainable classification method. Our method works by first constructing a symbolic Knowledge Base from the training data, and then performing probabilistic inferences on such Knowledge Base with linear programming. Our approach achieves a level of learning performance comparable to that of traditional classifiers such as random forests, support vector machines and neural networks. It identifies decisive features that are responsible for a classification as explanations and produces results similar to the ones found by SHAP, a state of the art Shapley Value based method. Our algorithms perform well on a range of synthetic and non-synthetic data sets.
A new brand of technical artificial intelligence ( Explainable AI ) research has focused on trying to open up the black box and provide some explainability. This paper presents a novel visual explanation method for deep learning networks in the form of a saliency map that can effectively localize entire object regions. In contrast to the current state-of-the art methods, the proposed method shows quite promising visual explanations that can gain greater trust of human expert. Both quantitative and qualitative evaluations are carried out on both general and clinical data sets to confirm the effectiveness of the proposed method.
Neural network classifiers (NNCs) are known to be vulnerable to malicious adversarial perturbations of inputs including those modifying a small fraction of the input features named sparse or $L_0$ attacks. Effective and fast $L_0$ attacks, such as the widely used Jacobian-based Saliency Map Attack (JSMA) are practical to fool NNCs but also to improve their robustness. In this paper, we show that penalising saliency maps of JSMA by the output probabilities and the input features of the NNC allows to obtain more powerful attack algorithms that better take into account each inputs characteristics. This leads us to introduce improv
While recent years have witnessed the emergence of various explainable methods in machine learning, to what degree the explanations really represent the reasoning process behind the model prediction -- namely, the faithfulness of explanation -- is still an open problem. One commonly used way to measure faithfulness is textit{erasure-based} criteria. Though conceptually simple, erasure-based criterion could inevitably introduce biases and artifacts. We propose a new methodology to evaluate the faithfulness of explanations from the textit{counterfactual reasoning} perspective: the model should produce substantially different outputs for the original input and its corresponding counterfactual edited on a faithful feature. Specially, we introduce two algorithms to find the proper counterfactuals in both discrete and continuous scenarios and then use the acquired counterfactuals to measure faithfulness. Empirical results on several datasets show that compared with existing metrics, our proposed counterfactual evaluation method can achieve top correlation with the ground truth under diffe

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا