Multi-fidelity estimators for coronary circulation models under clinically-informed data uncertainty


Abstract in English

Numerical models are increasingly used for non-invasive diagnosis and treatment planning in coronary artery disease, where service-based technologies have proven successful in identifying hemodynamically significant and hence potentially dangerous vascular anomalies. Despite recent progress towards clinical adoption, many results in the field are still based on a deterministic characterization of blood flow, with no quantitative assessment of the variability of simulation outputs due to uncertainty from multiple sources. In this study, we focus on parameters that are essential to construct accurate patient-specific representations of the coronary circulation, such as aortic pressure waveform, intramyocardial pressure and quantify how their uncertainty affects clinically relevant model outputs. We construct a deformable model of the left coronary artery subject to a prescribed inlet pressure and with open-loop outlet boundary conditions, treating fluid-structure interaction through an Arbitrary-Lagrangian-Eulerian frame of reference. Random input uncertainty is estimated directly from repeated clinical measurements from intra-coronary catheterization and complemented by literature data. We also achieve significant computational cost reductions in uncertainty propagation thanks to multifidelity Monte Carlo estimators of the outputs of interest, leveraging the ability to generate, at practically no cost, one- and zero-dimensional low-fidelity representations of left coronary artery flow, with appropriate boundary conditions. The results demonstrate how the use of multi-fidelity control variate estimators leads to significant reductions in variance and accuracy improvements with respect to traditional Monte-Carlo.

Download