We investigate the problem of determining the Hamiltonian of a locally interacting open-quantum system. To do so, we construct model estimators based on inverting a set of stationary, or dynamical, Heisenberg-Langevin equations of motion which rely on a polynomial number of measurements and parameters. We validate our Hamiltonian assignment methods by numerically simulating one-dimensional XX-interacting spin chains coupled to thermal reservoirs. We study Hamiltonian learning in the presence of systematic noise and find that, in certain time dependent cases, the Hamiltonian estimator accuracy increases when relaxing the environments physicality constraints.