No Arabic abstract
We analyze a confined flare that developed a hot cusp-like structure high in the corona (H ~ 66 Mm). A growing cusp-shaped flare arcade is a typical feature in the standard model of eruptive flares, caused by magnetic reconnection at progressively larger coronal heights. In contrast, we observe a static hot cusp during a confined flare. Despite an initial vertical temperature distribution similar to that in eruptive flares, we observe a distinctly different evolution during the late (decay) phase, in the form of prolonged hot emission. The distinct cusp shape, rooted at locations of non-thermal precursor activity, was likely caused by a magnetic field arcade that kinked near the top. Our observations indicate that the prolonged heating was a result of slow local reconnection and an increased thermal pressure near the kinked apexes due to continuous plasma upflows.
Understanding elemental abundance variations in the solar corona provides an insight into how matter and energy flow from the chromosphere into the heliosphere. Observed variations depend on the first ionization potential (FIP) of the main elements of the Suns atmosphere. High-FIP elements (>10 eV) maintain photospheric abundances in the corona, whereas low-FIP elements have enhanced abundances. Conversely, inverse FIP (IFIP) refers to the enhancement of high-FIP or depletion of low-FIP elements. We use spatially resolved spectroscopic observations, specifically the Ar XIV/Ca XIV intensity ratio, from Hinodes Extreme-ultraviolet Imaging Spectrometer to investigate the distribution and evolution of plasma composition within two confined flares in a newly emerging, highly sheared active region. During the decay phase of the first flare, patches above the flare ribbons evolve from the FIP to the IFIP effect, while the flaring loop tops show a stronger FIP effect. The patch and loop compositions then evolve toward the pre-flare basal state. We propose an explanation of how flaring in strands of highly sheared emerging magnetic fields can lead to flare-modulated IFIP plasma composition over coalescing umbrae which are crossed by flare ribbons. Subsurface reconnection between the coalescing umbrae leads to the depletion of low-FIP elements as a result of an increased wave flux from below. This material is evaporated when the flare ribbons cross the umbrae. Our results are consistent with the ponderomotive fractionation model (Laming2015) for the creation of IFIP-biased plasma.
Solar flares are one of the main forces behind space weather events. However the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows but there have been no spectroscopic scanning observation to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 27 January 2012 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (~30MK) fast (>500 km/s) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.
The fan-spine magnetic topology is believed to be responsible for many curious features in solar explosive events. A spine field line links distinct flux domains, but direct observation of such feature has been rare. Here we report a unique event observed by the Solar Dynamic Observatory where a set of hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric ribbon at one end and a remote brightening at the other. Magnetic field extrapolation suggests these loops are partly tracer of the evolving spine field line. Continuous slipping- and null-point-type reconnections were likely at work, energizing the loop plasma and transferring magnetic flux within and across the fan quasi-separatrix layer. We argue that the initial reconnection is of the breakout type, which then transitioned to a more violent flare reconnection with an eruption from the fan dome. Significant magnetic field changes are expected and indeed ensued. This event also features an extreme-ultraviolet (EUV) late phase, i.e. a delayed secondary emission peak in warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of large post-reconnection loops beside and above the compact fan, a direct product of eruption in such topological settings. The long cooling time of the large arcades contributes to the long delay; additional heating may also be required. Our result demonstrates the critical nature of cross-scale magnetic coupling - topological change in a sub-system may lead to explosions on a much larger scale.
Solar flares are often associated with coronal eruptions, but there are confined ones without eruption, even for some X-class flares. How such large flares occurred and why they are confined are still not well understood. Here we studied a confined X2.2 flare in NOAA 12673 on 2017 September 6. It exhibits two episodes of flare brightening with rather complex, atypical ribbons. Based on topology analysis of extrapolated coronal magnetic field, we revealed that there is a two-step magnetic reconnection process during the flare. Prior to the flare, there is a magnetic flux rope (MFR) with one leg rooted in a rotating sunspot. Neighboring to the leg is a magnetic null-point structure. The sunspot drives the MFR to expand, pushing magnetic flux to the null point, and reconnection is first triggered there. The disturbance from the null-point reconnection triggers the second reconnection, i.e., a tether-cutting reconnection below the rope. However, these two reconnections failed to produce an eruption, because the rope is firmly held by its strapping flux. Furthermore, we compared this flare with an eruptive X9.3 flare in the same region with 2 hours later, which has a similar MFR configuration. The key difference between them is that, for the confined flare, the MFR is fully below the threshold of torus instability, while for the eruptive one, the MFR reaches entirely above the threshold. This study provides a good evidence supporting that reconnection alone may not be able to trigger eruption, rather, MHD instability plays a more important role.
We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si IV 1402.77 A line exhibits significantly broadened line wings extending to 200 km/s but an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe XXI 1354.08 A line shows blueshifts and the cool Si IV 1402.77 A, C II 1335.71 A, and Mg II 2803.52 A lines show evident redshifts up to a velocity of 80 km/s, which are consistent with the scenario of chromospheric evaporation/condensation.