Do you want to publish a course? Click here

NLTE Analysis of Copper Abundances in the Galactic Bulge Stars

81   0   0.0 ( 0 )
 Added by Xiaodong Xu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the medium-high resolution (R~ 20,000), modest signal-to-noise ratio (S/N > 70) FLAMES-GIRAFFE spectra, we investigated the copper abundances of 129 red giant branch stars in the Galactic bulge with [Fe/H] from -1.14 to 0.46 dex. The copper abundances are derived from both local thermodynamic equilibrium (LTE) and nonlocal thermodynamic equilibrium (NLTE) with the spectral synthesis method. We find that the NLTE effects for Cu I lines show a clear dependence on metallicity, and they gradually increase with decreasing [Fe/H] for our sample stars. Our results indicate that the NLTE effects of copper are important not only for metal-poor stars but also for supersolar metal-rich ones and the LTE results underestimate the Cu abundances. We note that the [Cu/Fe] trend of the bulge stars is similar to that of the Galactic disk stars spanning the metallicity range of -1.14 < [Fe/H] < 0.0 dex and the [Cu/Fe] ratios increase with increasing metallicity when [Fe/H] is from~-1.2 to~-0.5 dex, favoring a secondary (metallicity-dependent) production of Cu.



rate research

Read More

The Milky Way bulge is an important tracer of the early formation and chemical enrichment of the Galaxy. The abundances of different iron-peak elements in field bulge stars can give information on the nucleosynthesis processes that took place in the earliest supernovae. Cobalt (Z=27) and copper (Z=29) are particularly interesting.We aim to identify the nucleosynthesis processes responsible for the formation of the iron-peak elements Co and Cu. Methods. We derived abundances of the iron-peak elements cobalt and copper in 56 bulge giants, 13 of which were red clump stars. High-resolution spectra were obtained using FLAMES-UVES at the ESO Very Large Telescope by our group in 2000-2002, which appears to be the highest quality sample of high-resolution data on bulge red giants obtained in the literature to date. Over the years we have derived the abundances of C, N, O, Na, Al, Mg; the iron-group elements Mn and Zn; and neutron-capture elements. In the present work we derive abundances of the iron-peak elements cobalt and copper. We also compute chemodynamical evolution models to interpret the observed behaviour of these elements as a function of iron. The sample stars show mean values of [Co/Fe]~0.0 at all metallicities, and [Cu/Fe]~0.0 for [Fe/H]>-0.8 and decreasing towards lower metallicities with a behaviour of a secondary element. We conclude that [Co/Fe] varies in lockstep with [Fe/H], which indicates that it should be produced in the alpha-rich freezeout mechanism in massive stars. Instead [Cu/Fe] follows the behaviour of a secondary element towards lower metallicities, indicating its production in the weak s-process nucleosynthesis in He-burning and later stages. The chemodynamical models presented here confirm the behaviour of these two elements (i.e. [Co/Fe] vs. [Fe/H]~constant and [Cu/Fe] decreasing with decreasing metallicities).
We have developed a model atom for Cu with which we perform statistical equilibrium computations that allow us to compute the line formation of Cu I lines in stellar atmospheres without assuming Local Thermodynamic Equilibrium (LTE). We validate this model atom by reproducing the observed line profiles of the Sun, Procyon and eleven metal-poor stars. Our sample of stars includes both dwarfs and giants. Over a wide range of stellar parameters we obtain excellent agreement among different Cu I lines. The eleven metal-poor stars have iron abundances in the range -4.2 <= [Fe/H] <= -1.4, the weighted mean of the [Cu/Fe] ratios is -0.22 dex, with a scatter of -0.15 dex. This is very different from the results from LTE analysis (the difference between NLTE and LTE abundances reaches 1 dex) and in spite of the small size of our sample it prompts for a revision of the Galactic evolution of Cu.
We obtained high-resolution near-IR spectra of 45 AGB stars located in the Galactic bulge. The aim of the project is to determine key elemental abundances in these stars to help constrain the formation history of the bulge. A further aim is to link the photospheric abundances to the dust species found in the winds of the stars. Here we present a progress report of the analysis of the spectra.
Oxygen and zinc in the Galactic bulge are key elements for the understanding of the bulge chemical evolution. Oxygen-to-iron abundance ratios provide a most robust indicator of the star formation rate and chemical evolution of the bulge. Zinc is enhanced in metal-poor stars, behaving as an $alpha$-element, and its production may require nucleosynthesis in hypernovae. Most of the neutral gas at high redshift is in damped Lyman-alpha systems (DLAs), where Zn is also observed to behave as an alpha-element. The aim of this work is the derivation of the alpha-element oxygen, together with nitrogen, and the iron-peak element zinc abundances in 417 bulge giants, from moderate resolution (R~22,000) FLAMES-GIRAFFE spectra. For stars in common with a set of UVES spectra with higher resolution (R~45,000), the data are intercompared. The results are compared with literature data and chemodynamical models.
113 - Yoichi Takeda 2021
Spectroscopic determinations of Rubidium abundances were conducted by applying the spectrum fitting method to the Rb I 7800 line for an extensive sample of ~500 late-type dwarfs as well as giants (including Hyades cluster stars) belonging to the galactic disk population, with an aim of establishing the behaviour of [Rb/Fe] ratio for disk stars in the metallicity range of -0.6<[Fe/H]<+0.3. An inspection of the resulting Rb abundances for Hyades dwarfs revealed that they show a systematic Teff-dependent trend at >5500K; this means that the results for mid-G to F stars (including the Sun) are not reliable (i.e., more or less overestimated), which might be due to some imperfect treatment of surface convection in classical model atmospheres. As such, it was decided to confine only to late-G and K stars at Teff<5500K and adopt the solar-system (meteoritic) value as the reference Rb abundance. The [Rb/Fe] vs.[Fe/H] relations derived for field dwarfs and giants turned out to be consistent with each other, showing a gradual increase of [Rb/Fe] with a decrease in [Fe/H] (with d[Rb/Fe]/d[Fe/H] gradient of ~-0.4 around the solar metallicity), which is favourably compared with the theoretical prediction of chemical evolution models. Accordingly, this study could not confirm the anomalous behaviour of [Rb/Fe] ratio (tending to be subsolar but steeply increasing toward supersolar metallicity) recently reported for M dwarf stars of -0.3<[Fe/H]<+0.3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا