No Arabic abstract
This study tackles unsupervised domain adaptation of reading comprehension (UDARC). Reading comprehension (RC) is a task to learn the capability for question answering with textual sources. State-of-the-art models on RC still do not have general linguistic intelligence; i.e., their accuracy worsens for out-domain datasets that are not used in the training. We hypothesize that this discrepancy is caused by a lack of the language modeling (LM) capability for the out-domain. The UDARC task allows models to use supervised RC training data in the source domain and only unlabeled passages in the target domain. To solve the UDARC problem, we provide two domain adaptation models. The first one learns the out-domain LM and in-domain RC task sequentially. The second one is the proposed model that uses a multi-task learning approach of LM and RC. The models can retain both the RC capability acquired from the supervised data in the source domain and the LM capability from the unlabeled data in the target domain. We evaluated the models on UDARC with five datasets in different domains. The models outperformed the model without domain adaptation. In particular, the proposed model yielded an improvement of 4.3/4.2 points in EM/F1 in an unseen biomedical domain.
In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose an Adversarial Domain Adaptation framework (AdaMRC), where ($i$) pseudo questions are first generated for unlabeled passages in the target domain, and then ($ii$) a domain classifier is incorporated into an MRC model to predict which domain a given passage-question pair comes from. The classifier and the passage-question encoder are jointly trained using adversarial learning to enforce domain-invariant representation learning. Comprehensive evaluations demonstrate that our approach ($i$) is generalizable to different MRC models and datasets, ($ii$) can be combined with pre-trained large-scale language models (such as ELMo and BERT), and ($iii$) can be extended to semi-supervised learning.
Recent work has shown the importance of adaptation of broad-coverage contextualised embedding models on the domain of the target task of interest. Current self-supervised adaptation methods are simplistic, as the training signal comes from a small percentage of emph{randomly} masked-out tokens. In this paper, we show that careful masking strategies can bridge the knowledge gap of masked language models (MLMs) about the domains more effectively by allocating self-supervision where it is needed. Furthermore, we propose an effective training strategy by adversarially masking out those tokens which are harder to reconstruct by the underlying MLM. The adversarial objective leads to a challenging combinatorial optimisation problem over emph{subsets} of tokens, which we tackle efficiently through relaxation to a variational lowerbound and dynamic programming. On six unsupervised domain adaptation tasks involving named entity recognition, our method strongly outperforms the random masking strategy and achieves up to +1.64 F1 score improvements.
In this work we explore Unsupervised Domain Adaptation (UDA) of pretrained language models for downstream tasks. We introduce UDALM, a fine-tuning procedure, using a mixed classification and Masked Language Model loss, that can adapt to the target domain distribution in a robust and sample efficient manner. Our experiments show that performance of models trained with the mixed loss scales with the amount of available target data and the mixed loss can be effectively used as a stopping criterion during UDA training. Furthermore, we discuss the relationship between A-distance and the target error and explore some limitations of the Domain Adversarial Training approach. Our method is evaluated on twelve domain pairs of the Amazon Reviews Sentiment dataset, yielding $91.74%$ accuracy, which is an $1.11%$ absolute improvement over the state-of-the-art.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements over various cross-lingual and low-resource tasks. Through training on one hundred languages and terabytes of texts, cross-lingual language models have proven to be effective in leveraging high-resource languages to enhance low-resource language processing and outperform monolingual models. In this paper, we further investigate the cross-lingual and cross-domain (CLCD) setting when a pretrained cross-lingual language model needs to adapt to new domains. Specifically, we propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features and domain-invariant features from the entangled pretrained cross-lingual representations, given unlabeled raw texts in the source language. Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts. Experimental results show that our proposed method achieves significant performance improvements over the state-of-the-art pretrained cross-lingual language model in the CLCD setting. The source code of this paper is publicly available at https://github.com/lijuntaopku/UFD.