Do you want to publish a course? Click here

The universal fibration with fibre $X$ in rational homotopy theory

52   0   0.0 ( 0 )
 Added by Samuel Smith
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a simply connected space with finite-dimensional rational homotopy groups. Let $p_infty colon UE to mathrm{Baut}_1(X)$ be the universal fibration of simply connected spaces with fibre $X$. We give a DG Lie model for the evaluation map $ omega colon mathrm{aut}_1(mathrm{Baut}_1(X_{mathbb Q})) to mathrm{Baut}_1(X_{mathbb Q})$ expressed in terms of derivations of the relative Sullivan model of $p_infty$. We deduce formulas for the rational Gottlieb group and for the evaluation subgroups of the classifying space $mathrm{Baut}_1(X_{mathbb Q})$ as a consequence. We also prove that ${mathbb C} P^n_{mathbb Q}$ cannot be realized as $mathrm{Baut}_1(X_{mathbb Q})$ for $n leq 4$ and $X$ with finite-dimensional rational homotopy groups.



rate research

Read More

Digital topology is part of the ongoing endeavour to understand and analyze digitized images. With a view to supporting this endeavour, many notions from algebraic topology have been introduced into the setting of digital topology. But some of the most basic notions from homotopy theory remain largely absent from the digital topology literature. We embark on a development of homotopy theory in digital topology, and define such fundamental notions as function spaces, path spaces, and cofibrations in this setting. We establish digital analogues of basic homotopy-theoretic properties such as the homotopy extension property for cofibrations, and the homotopy lifting property for certain evaluation maps that correspond to path fibrations in the topological setting. We indicate that some depth may be achieved by using these homotopy-theoretic notions to give a preliminary treatment of Lusternik-Schnirelmann category in the digital topology setting. This topic provides a connection between digital topology and critical points of functions on manifolds, as well as other topics from topological dynamics.
We study localization at a prime in homotopy type theory, using self maps of the circle. Our main result is that for a pointed, simply connected type $X$, the natural map $X to X_{(p)}$ induces algebraic localizations on all homotopy groups. In order to prove this, we further develop the theory of reflective subuniverses. In particular, we show that for any reflective subuniverse $L$, the subuniverse of $L$-separated types is again a reflective subuniverse, which we call $L$. Furthermore, we prove results establishing that $L$ is almost left exact. We next focus on localization with respect to a map, giving results on preservation of coproducts and connectivity. We also study how such localizations interact with other reflective subuniverses and orthogonal factorization systems. As key steps towards proving the main theorem, we show that localization at a prime commutes with taking loop spaces for a pointed, simply connected type, and explicitly describe the localization of an Eilenberg-Mac Lane space $K(G,n)$ with $G$ abelian. We also include a partial converse to the main theorem.
We prove that the sectional category of the universal fibration with fibre X, for X any space that satisfies a well-known conjecture of Halperin, equals one after rationalization.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model structure are not well understood calculationally. To illustrate, we exhibit some examples of cofibrant and fibrant posets and an example of a non-cofibrant finite poset.
We define in the setting of homotopy type theory an H-space structure on $mathbb S^3$. Hence we obtain a description of the quaternionic Hopf fibration $mathbb S^3hookrightarrowmathbb S^7twoheadrightarrowmathbb S^4$, using only homotopy invariant tools.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا