Do you want to publish a course? Click here

Overcharging of zinc ion in the structure of zinc finger protein is needed for DNA binding stability

101   0   0.0 ( 0 )
 Added by Toan T. Nguyen
 Publication date 2019
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

The zinc finger structure where a Zn2+ ion binds to 4 cysteine or histidine amino acids in a tetrahedral structure is very common motif of nucleic acid binding proteins. The corresponding interaction model is present in 3% of the genes of human genome. As a result, zinc finger has been shown to be extremely useful in various therapeutic and research capacities, as well as in biotechnology. In stable configuration, the cysteine amino acids are deprotonated and become negatively charged. This means the Zn2+ ion is overscreened by 4 cysteine charges (overcharged). It is question of whether this overcharged configuration is also stable when such negatively charged zinc finger binds to negatively charged DNA molecule. Using all atom molecular dynamics simulation up to microsecond range of an androgen receptor protein dimer, we investigate how the deprotonated state of cysteine influences its structure, dynamics, and function in binding o DNA molecules. Our results show that the deprotonated state of cysteine residues are essential for mechanical stabilization of the functional, folded conformation. Not only this state stabilizes the protein structure, it also stabilizes the protein-DNA binding complex. The differences in structural and energetic properties of the two (sequence-identical) monomers are also investigated showing the strong influence of DNA on the structure of zinc fingers upon complexation. Our result has potential impact on better molecular understanding of one of the most common classes of zinc fingers



rate research

Read More

Strongly correlated electrostatics of DNA systems has drawn the interest of many groups, especially the condensation and overcharging of DNA by multivalent counterions. By adding counterions of different valencies and shapes, one can enhance or reduce DNA overcharging. In this papers, we focus on the effect of multivalent co-ions, specifically divalent co-ions such as SO$_4^{2-}$. A computational experiment of DNA condensation using Monte$-$Carlo simulation in grand canonical ensemble is carried out where DNA system is in equilibrium with a bulk solution containing a mixture of salt of different valency of co-ions. Compared to system with purely monovalent co-ions, the influence of divalent co-ions shows up in multiple aspects. Divalent co-ions lead to an increase of monovalent salt in the DNA condensate. Because monovalent salts mostly participate in linear screening of electrostatic interactions in the system, more monovalent salt molecules enter the condensate leads to screening out of short-range DNA$-$DNA like charge attraction and weaker DNA condensation free energy. The overcharging of DNA by multivalent counterions is also reduced in the presence of divalent co$-$ions. Strong repulsions between DNA and divalent co-ions and among divalent co-ions themselves leads to a {em depletion} of negative ions near DNA surface as compared to the case without divalent co-ions. At large distance, the DNA$-$DNA repulsive interaction is stronger in the presence of divalent co$-$ions, suggesting that divalent co$-$ions role is not only that of simple stronger linear screening.
Much of the complexity observed in gene regulation originates from cooperative protein-DNA binding. While studies of the target search of proteins for their specific binding sites on the DNA have revealed design principles for the quantitative characteristics of protein-DNA interactions, no such principles are known for the cooperative interactions between DNA-binding proteins. We consider a simple theoretical model for two interacting transcription factor (TF) species, searching for and binding to two adjacent target sites hidden in the genomic background. We study the kinetic competition of a dimer search pathway and a monomer search pathway, as well as the steady-state regulation function mediated by the two TFs over a broad range of TF-TF interaction strengths. Using a transcriptional AND-logic as exemplary functional context, we identify the functionally desirable regime for the interaction. We find that both weak and very strong TF-TF interactions are favorable, albeit with different characteristics. However, there is also an unfavorable regime of intermediate interactions where the genetic response is prohibitively slow.
153 - Yuhang Guo , Xiao Luo , Liang Chen 2021
Predicting DNA-protein binding is an important and classic problem in bioinformatics. Convolutional neural networks have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. However, none of the studies has utilized graph convolutional networks for motif inference. In this work, we propose to use graph convolutional networks for motif inference. We build a sequence k-mer graph for the whole dataset based on k-mer co-occurrence and k-mer sequence relationship and then learn DNA Graph Convolutional Network (DNA-GCN) for the whole dataset. Our DNA-GCN is initialized with a one-hot representation for all nodes, and it then jointly learns the embeddings for both k-mers and sequences, as supervised by the known labels of sequences. We evaluate our model on 50 datasets from ENCODE. DNA-GCN shows its competitive performance compared with the baseline model. Besides, we analyze our model and design several different architectures to help fit different datasets.
Test experiments of hybridization in DNA microarrays show systematic deviations from the equilibrium isotherms. We argue that these deviations are due to the presence of a partially hybridized long-lived state, which we include in a kinetic model. Experiments confirm the model predictions for the intensity vs. free energy behavior. The existence of slow relaxation phenomena has important consequences for the specificity of microarrays as devices for the detection of a target sequence from a complex mixture of nucleic acids.
Modeling the effects of mutations on the binding affinity plays a crucial role in protein engineering and drug design. In this study, we develop a novel deep learning based framework, named GraphPPI, to predict the binding affinity changes upon mutations based on the features provided by a graph neural network (GNN). In particular, GraphPPI first employs a well-designed pre-training scheme to enforce the GNN to capture the features that are predictive of the effects of mutations on binding affinity in an unsupervised manner and then integrates these graphical features with gradient-boosting trees to perform the prediction. Experiments showed that, without any annotated signals, GraphPPI can capture meaningful patterns of the protein structures. Also, GraphPPI achieved new state-of-the-art performance in predicting the binding affinity changes upon both single- and multi-point mutations on five benchmark datasets. In-depth analyses also showed GraphPPI can accurately estimate the effects of mutations on the binding affinity between SARS-CoV-2 and its neutralizing antibodies. These results have established GraphPPI as a powerful and useful computational tool in the studies of protein design.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا