The compound UTe2 has recently been shown to realize spin triplet superconductivity from a non-magnetic normal state. This has sparked intense research activity, including theoretical analyses that suggest the superconducting order parameter to be topologically nontrivial. However, the underlying electronic band structure is a critical factor for these analyses, and remains poorly understood. Here, we present high resolution angle resolved photoemission (ARPES) measurements covering multiple planes in the 3D Brillouin zone of UTe2, revealing distinct Fermi-level features from two orthogonal quasi-one dimensional light electron bands and one heavy band. The electronic symmetries are evaluated in comparison with numerical simulations, and the resulting picture is discussed as a platform for unconventional many-body order.