We show that string-net models provide a novel geometric method to construct invariants of mapping class group actions. Concretely, we consider string-net models for a modular tensor category ${mathcal C}$. We show that the datum of a specific commutative symmetric Frobenius algebra in the Drinfeld center $Z(mathcal{C})$ gives rise to invariant string-nets. The Frobenius algebra has the interpretation of the algebra of bulk fields of the conformal field theory in the Cardy case.
We develop the representation of free spinor fields in the bulk of Lorentzian anti-de Sitter space in terms of smeared operators in the dual conformal field theory. To do this we expand the bulk field in a complete set of normalizable modes, work out the extrapolate dictionary for spinor fields, and show that the bulk field can be reconstructed from its near-boundary behavior. In some cases chirality and reality conditions can be imposed in the bulk. We study the action of the CFT modular Hamiltonian on bulk fermions to show that they transform with the expected spinor Lie derivative, and we calculate bulk--boundary two-point functions starting from CFT correlators.
We consider the 2-point function of string vertex operators representing string state with large spin in AdS_5. We compute this correlator in the semiclassical approximation and show that it has the expected (on the basis of state-operator correspondence) form of the strong-coupling limit of the 2-point function of single trace minimal twist operators in gauge theory. The semiclassical solution representing the stationary point of the path integral with two vertex operator insertions is found to be related to the large spin limit of the folded spinning string solution by a euclidean continuation, transformation to Poincare coordinates and conformal map from cylinder to complex plane. The role of the source terms coming from the vertex operator insertions is to specify the parameters of the solution in terms of quantum numbers (dimension and spin) of the corresponding string state. Understanding further how similar semiclassical methods may work for 3-point functions may shed light on strong-coupling limit of the corresponding correlators in gauge theory as was recently suggested by Janik et al in arXiv:1002.4613.
We compute three-point correlation functions in the near-extremal, near-horizon region of a Kerr black hole, and compare to the corresponding finite-temperature conformal field theory correlators. For simplicity, we focus on scalar fields dual to operators ${cal O}_h$ whose conformal dimensions obey $h_3=h_1+h_2$, which we name emph{extremal} in analogy with the classic $AdS_5 times S^5$ three-point function in the literature. For such extremal correlators we find perfect agreement with the conformal field theory side, provided that the coupling of the cubic interaction contains a vanishing prefactor $propto h_3-h_1-h_2$. In fact, the bulk three-point function integral for such extremal correlators diverges as $1/(h_3-h_1-h_2)$. This behavior is analogous to what was found in the context of extremal AdS/CFT three-point correlators. As in AdS/CFT our correlation function can nevertheless be computed via analytic continuation from the non-extremal case.
The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in the extremal case, e.g. k_1 = k_2 + k_3. First, the supergravity calculation involves analytic continuation in the k_i variables to define the product of a vanishing bulk coupling and an infinite integral over AdS. Second, extremal correlators are uniquely sensitive to mixing of the single-trace operators $tr X^k$ with protected multi-trace operators in the same representation of SU(4). We show that the calculation of extremal correlators from supergravity is subject to the same subtlety of regularization known for the 2-point functions, and we present a careful method which justifies the analytic continuation and shows that supergravity fields couple to single traces without admixture. We also study extremal n-point functions of chiral primary operators, and argue that Type IIB supergravity requires that their space-time form is a product of n-1 two-point functions (as in the free field approximation) multiplied by a non-renormalized coefficient. This non-renormalization property of extremal n-point functions is a new prediction of the AdS/CFT correspondence. As a byproduct of this work we obtain the cubic couplings $t phi phi$ and $s phi phi$ of fields in the dilaton and 5-sphere graviton towers of Type IIB supergravity on $AdS_5 times S^5$.
We examine several different types of five dimensional stationary spacetimes with bulk scalar fields and parallel 3-branes. We study different methods for avoiding the appearance of spacetime singularities in the bulk for models with and without cosmological expansion. For non-expanding models, we demonstrate that in general the Randall-Sundrum warp factor is recovered in the asymptotic bulk region, although elsewhere the warping may be steeper than exponential. We show that nonsingular expanding models can be constructed as long as the gradient of the bulk scalar field vanishes at zeros of the warp factor, which are then analogous to the particle horizons found in expanding models with a pure AdS bulk. Since the branes in these models are stabilized by bulk scalar fields, we expect there to be no linearly unstable radion modes. As an application, we find a specific class of expanding, stationary solutions with no singularities in the bulk in which the four dimensional cosmological constant and mass hierarchy are naturally very small.