Monogamy relations of quantum coherence between multiple subspaces


Abstract in English

Quantum coherence plays an important role in quantum information protocols that provide an advantage over classical information processing. The amount of coherence that can exist between two orthogonal subspaces is limited by the positivity constraint on the density matrix. On the level of multipartite systems, this gives rise to what is known as monogamy of entanglement. On the level of single systems this leads to a bound, and hence, a trade-off in coherence that can exist between different orthogonal subspaces. In this work we derive trade-off relations for the amount of coherence that can be shared between a given subspace and all other subspaces based on trace norm, Hilbert-Schmidt norm and von Neumann relative entropy. From this we derive criteria detecting genuine multisubspace coherence.

Download