Do you want to publish a course? Click here

Capacity scaling in a Non-coherent Wideband Massive SIMO Block Fading Channel

118   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The scaling of coherent and non-coherent channel capacity is studied in a single-input multiple-output (SIMO) block Rayleigh fading channel as both the bandwidth and the number of receiver antennas go to infinity jointly with the transmit power fixed. The transmitter has no channel state information (CSI), while the receiver may have genie-provided CSI (coherent receiver), or the channel statistics only (non-coherent receiver). Our results show that if the available bandwidth is smaller than a threshold bandwidth which is proportional (up to leading order terms) to the square root of the number of antennas, there is no gap between the coherent capacity and the non-coherent capacity in terms of capacity scaling behavior. On the other hand, when the bandwidth is larger than this threshold, there is a capacity scaling gap. Since achievable rates using pilot symbols for channel estimation are subject to the non-coherent capacity bound, this work reveals that pilot-assisted coherent receivers in systems with a large number of receive antennas are unable to exploit excess spectrum above a given threshold for capacity gain.



rate research

Read More

In non-coherent wideband fading channels where energy rather than spectrum is the limiting resource, peaky and non-peaky signaling schemes have long been considered species apart, as the first approaches asymptotically the capacity of a wideband AWGN channel with the same average SNR, whereas the second reaches a peak rate at some finite critical bandwidth and then falls to zero as bandwidth grows to infinity. In this paper it is shown that this distinction is in fact an artifact of the limited attention paid in the past to the product between the bandwidth and the fraction of time it is in use. This fundamental quantity, called bandwidth occupancy, measures average bandwidth usage over time. For all signaling schemes with the same bandwidth occupancy, achievable rates approach to the wideband AWGN capacity within the same gap as the bandwidth occupancy approaches its critical value, and decrease to zero as the occupancy goes to infinity. This unified analysis produces quantitative closed-form expressions for the ideal bandwidth occupancy, recovers the existing capacity results for (non-)peaky signaling schemes, and unveils a trade-off between the accuracy of approximating capacity with a generalized Taylor polynomial and the accuracy with which the optimal bandwidth occupancy can be bounded.
Given a multiple-input multiple-output (MIMO) channel, feedback from the receiver can be used to specify a transmit precoding matrix, which selectively activates the strongest channel modes. Here we analyze the performance of Random Vector Quantization (RVQ), in which the precoding matrix is selected from a random codebook containing independent, isotropically distributed entries. We assume that channel elements are i.i.d. and known to the receiver, which relays the optimal (rate-maximizing) precoder codebook index to the transmitter using B bits. We first derive the large system capacity of beamforming (rank-one precoding matrix) as a function of B, where large system refers to the limit as B and the number of transmit and receive antennas all go to infinity with fixed ratios. With beamforming RVQ is asymptotically optimal, i.e., no other quantization scheme can achieve a larger asymptotic rate. The performance of RVQ is also compared with that of a simpler reduced-rank scalar quantization scheme in which the beamformer is constrained to lie in a random subspace. We subsequently consider a precoding matrix with arbitrary rank, and approximate the asymptotic RVQ performance with optimal and linear receivers (matched filter and Minimum Mean Squared Error (MMSE)). Numerical examples show that these approximations accurately predict the performance of finite-size systems of interest. Given a target spectral efficiency, numerical examples show that the amount of feedback required by the linear MMSE receiver is only slightly more than that required by the optimal receiver, whereas the matched filter can require significantly more feedback.
121 - Elad Domanovitz , Uri Erez 2019
Communication over the i.i.d. Rayleigh slow-fading MAC is considered, where all terminals are equipped with a single antenna. Further, a communication protocol is considered where all users transmit at (just below) the symmetric capacity (per user) of the channel, a rate which is fed back (dictated) to the users by the base station. Tight bounds are established on the distribution of the rate attained by the protocol. In particular, these bounds characterize the probability that the dominant face of the MAC capacity region contains a symmetric rate point, i.e., that the considered protocol strictly attains the sum capacity of the channel. The analysis provides a non-asymptotic counterpart to the diversity-multiplexing tradeoff of the multiple access channel. Finally, a practical scheme based on integer-forcing and space-time precoding is shown to be an effective coding architecture for this communication scenario.
An uplink system with a single antenna transmitter and a single receiver with a large number of antennas is considered. We propose an energy-detection-based single-shot noncoherent communication scheme which does not use the instantaneous channel state information (CSI), but rather only the knowledge of the channel statistics. The suggested system uses a transmitter that modulates information on the power of the symbols, and a receiver which measures only the average energy across the antennas. We propose constellation designs which are asymptotically optimal with respect to symbol error rate (SER) with an increasing number of antennas, for any finite signal to noise ratio (SNR) at the receiver, under different assumptions on the availability of CSI statistics (exact channel fading distribution or the first few moments of the channel fading distribution). We also consider the case of imperfect knowledge of the channel statistics and describe in detail the case when there is a bounded uncertainty on the moments of the fading distribution. We present numerical results on the SER performance achieved by these designs in typical scenarios and find that they may outperform existing noncoherent constellations, e.g., conventional Amplitude Shift Keying (ASK), and pilot-based schemes, e.g., Pulse Amplitude Modulation (PAM). We also observe that an optimized constellation for a specific channel distribution makes it very sensitive to uncertainties in the channel statistics. In particular, constellation designs based on optimistic channel conditions could lead to significant performance degradation in terms of the achieved symbol error rates.
In this paper the performance limits and design principles of rateless codes over fading channels are studied. The diversity-multiplexing tradeoff (DMT) is used to analyze the system performance for all possible transmission rates. It is revealed from the analysis that the design of such rateless codes follows the design principle of approximately universal codes for parallel multiple-input multiple-output (MIMO) channels, in which each sub-channel is a MIMO channel. More specifically, it is shown that for a single-input single-output (SISO) channel, the previously developed permutation codes of unit length for parallel channels having rate LR can be transformed directly into rateless codes of length L having multiple rate levels (R, 2R, . . ., LR), to achieve the DMT performance limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا