Do you want to publish a course? Click here

Minimizing the Information Leakage Regarding High-Level Task Specifications

52   0   0.0 ( 0 )
 Added by Michael Hibbard
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider a scenario in which an autonomous agent carries out a mission in a stochastic environment while passively observed by an adversary. For the agent, minimizing the information leaked to the adversary regarding its high-level specification is critical in creating an informational advantage. We express the specification of the agent as a parametric linear temporal logic formula, measure the information leakage by the adversarys confidence in the agents mission specification, and propose algorithms to synthesize a policy for the agent which minimizes the information leakage to the adversary. In the scenario considered, the adversary aims to infer the specification of the agent from a set of candidate specifications, each of which has an associated likelihood probability. The agents objective is to synthesize a policy that maximizes the entropy of the adversarys likelihood distribution while satisfying its specification. We propose two approaches to solve the resulting synthesis problem. The first approach computes the exact satisfaction probabilities for each candidate specification, whereas the second approach utilizes the Frechet inequalities to approximate them. For each approach, we formulate a mixed-integer program with a quasiconcave objective function. We solve the problem using a bisection algorithm. Finally, we compare the performance of both approaches on numerical simulations.



rate research

Read More

63 - Canqi Yao , Shibo Chen , 2021
To handle the detrimental effects brought by leakage of radioactive gases at nuclear power station, we propose a bus based evacuation optimization problem. The proposed model incorporates the following four constraints, 1) the maximum dose of radiation per evacuee, 2) the limitation of bus capacity, 3) the number of evacuees at demand node (bus pickup stop), 4) evacuees balance at demand and shelter nodes, which is formulated as a mixed integer nonlinear programming (MINLP) problem. Then, to eliminate the difficulties of choosing a proper M value in Big-M method, a Big-M free method is employed to linearize the nonlinear terms of the MINLP problem. Finally, the resultant mixed integer linear program (MILP) problem is solvable with efficient commercial solvers such as CPLEX or Gurobi, which guarantees the optimal evacuation plan obtained. To evaluate the effectiveness of proposed evacuation model, we test our model on two different scenarios (a random one and a practical scenario). For both scenarios, our model attains executable evacuation plan within given 3600 seconds computation time.
We develop a learning-based algorithm for the control of robotic systems governed by unknown, nonlinear dynamics to satisfy tasks expressed as signal temporal logic specifications. Most existing algorithms either assume certain parametric forms for the dynamic terms or resort to unnecessarily large control inputs (e.g., using reciprocal functions) in order to provide theoretical guarantees. The proposed algorithm avoids the aforementioned drawbacks by innovatively integrating neural network-based learning with adaptive control. More specifically, the algorithm learns a controller, represented as a neural network, using training data that correspond to a collection of different tasks and robot parameters. It then incorporates this neural network into an online closed-loop adaptive control mechanism in such a way that the resulting behavior satisfies a user-defined task. The proposed algorithm does not use any information on the unknown dynamic terms or any approximation schemes. We provide formal theoretical guarantees on the satisfaction of the task and we demonstrate the effectiveness of the algorithm in a virtual simulator using a 6-DOF robotic manipulator.
Mixed observable Markov decision processes (MOMDPs) are a modeling framework for autonomous systems described by both fully and partially observable states. In this work, we study the problem of synthesizing a control policy for MOMDPs that minimizes the expected time to complete the control task while satisfying syntactically co-safe Linear Temporal Logic (scLTL) specifications. First, we present an exact dynamic programming update to compute the value function. Afterwards, we propose a point-based approximation, which allows us to compute a lower bound of the closed-loop probability of satisfying the specifications. The effectiveness of the proposed approach and comparisons with standard strategies are shown on high-fidelity navigation tasks with partially observable static obstacles.
This paper studies the impact of imperfect information in online control with adversarial disturbances. In particular, we consider both delayed state feedback and inexact predictions of future disturbances. We introduce a greedy, myopic policy that yields a constant competitive ratio against the offline optimal policy with delayed feedback and inexact predictions. A special case of our result is a constant competitive policy for the case of exact predictions and no delay, a previously open problem. We also analyze the fundamental limits of online control with limited information by showing that our competitive ratio bounds for the greedy, myopic policy in the adversarial setting match (up to lower-order terms) lower bounds in the stochastic setting.
This paper introduces HPIPM, a high-performance framework for quadratic programming (QP), designed to provide building blocks to efficiently and reliably solve model predictive control problems. HPIPM currently supports three QP types, and provides interior point method (IPM) solvers as well (partial) condensing routines. In particular, the IPM for optimal control QPs is intended to supersede the HPMPC solver, and it largely improves robustness while keeping the focus on speed. Numerical experiments show that HPIPM reliably solves challenging QPs, and that it outperforms other state-of-the-art solvers in speed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا