Do you want to publish a course? Click here

Role of Element-Specific Damping on the Ultrafast, Helicity-Independent All-Optical Switching Dynamics in Amorphous (Gd,Tb)Co Thin Films

313   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultrafast control of the magnetization in ps timescales by fs laser pulses offers an attractive avenue for applications such as fast magnetic devices for logic and memory. However, ultrafast helicity-independent all-optical switching (HI-AOS) of the magnetization has thus far only been observed in Gd-based, ferrimagnetic amorphous (textit{a}-) rare earth-transition metal (textit{a}-RE-TM) systems, and a comprehensive understanding of the reversal mechanism remains elusive. Here, we report HI-AOS in ferrimagnetic textit{a}-Gd$_{22-x}$Tb$_x$Co$_{78}$ thin films, from x = 0 to x = 18, and elucidate the role of Gd in HI-AOS in textit{a}-RE-TM alloys and multilayers. Increasing Tb content results in increasing perpendicular magnetic anisotropy and coercivity, without modifying magnetization density, and slower remagnetization rates and higher critical fluences for switching but still shows picosecond HI-AOS. Simulations of the atomistic spin dynamics based on the two-temperature model reproduce these results qualitatively and predict that the lower damping on the RE sublattice arising from the small spin-orbit coupling of Gd (with $L = 0$) is instrumental for the faster dynamics and lower critical fluences of the Gd-rich alloys. Annealing textit{a}-Gd$_{10}$Tb$_{12}$Co$_{78}$ leads to slower dynamics which we argue is due to an increase in damping. These simulations strongly indicate that acounting for element-specific damping is crucial in understanding HI-AOS phenomena. The results suggest that engineering the element specific damping of materials can open up new classes of materials that exhibit low-energy, ultrafast HI-AOS.

rate research

Read More

Using time-resolved magneto-optical Kerr effect (TR-MOKE) method, helicity-dependent all-optical magnetization switching (HD-AOS) is observed in ferrimagnetic TbFeCo films. The thermal effect and opto-magneto effects are separately justified after single circularly polarized laser pulse. The integral evolution of this ultrafast switching is characterized on different time scales and the defined magnetization reversal time of 460 fs is the fastest ever observed. Combining the heat effect and inverse Faraday effect (IFE), micromagnetic simulations based on a single macro-spin model are performed that reproduce HD-AOS following a linear reversal mechanism.
Domain wall displacement in Co/Pt thin films induced by not only fs- but also ps-laser pulses is demonstrated using time-resolved magneto-optical Faraday imaging. We evidence multi-pulse helicity-dependent laser-induced domain wall motion in all-optical switchable Co/Pt multilayers with a laser energy below the switching threshold. Domain wall displacement of about 2 nm per 2- ps pulse is achieved. By investigating separately the effect of linear and circular polarization, we reveal that laser-induced domain wall motion results from a complex interplay between pinning, temperature gradient and helicity effect. Then, we explore the microscopic origin of the helicity effect acting on the domain wall. These experimental results enhance the understanding of the mechanism of all-optical switching in ultra-thin ferromagnetic films.
In recent years, there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures while the amorphous counterparts have been less studied. By using a multiscale approach, i.e. first-principles density functional theory combined with atomistic spin dynamics, we report here on the very intricate structural and magnetic nature of amorphous Gd-Fe alloys for a wide range of Gd and Fe atomic concentrations at the nanoscale level. Both structural and dynamical properties of Gd-Fe alloys reported in this work are in good agreement with previous experiments. We calculated the dynamic behavior of homogeneous and inhomogeneous amorphous Gd-Fe alloys and their response under the influence of a femtosecond laser pulse. In the homogeneous sample, the Fe sublattice switches its magnetization before the Gd one. However, the temporal sequence of the switching of the two sublattices is reversed in the inhomogeneous sample. We propose a possible explanation based on a mechanism driven by a combination of the Dzyaloshiskii-Moriya interaction and exchange frustration, modeled by an antiferromagnetic second-neighbour exchange interaction between Gd atoms in the Gd-rich region. We also report on the influence of laser fluence and damping effects in the all-thermal switching.
Amorphous Tb$_{x}$Co$_{100-x}$ magnetic alloys exhibit a list of intriguing properties, such as perpendicular magnetic anisotropy, high magneto-optical activity and magnetization switching using ultrashort optical pulses. Varying the Tb:Co ratio in these alloys allows for tuning properties such as the saturation magnetic moment, coercive field and the performance of the light-induced magnetization switching. In this work, we investigate the magnetic, optical and magneto-optical properties of various Tb$_{x}$Co$_{100-x}$ thin film alloy compositions. We report on the effect the choice of different seeding layers has on the structural and magnetic properties of Tb$_{x}$Co$_{100-x}$ layers. We also demonstrate that for a range of alloys, deposited on fused silica substrates, with Tb content of 24-30 at.$%$, helicity dependent all-optical switching of magnetization can be achieved, albeit in a multi-shot framework. We explain this property to arise from the helicity-dependent laser induced magnetization on the Co sublattice due to the inverse Faraday effect. Our study provides an insight into material aspects for future potential hybrid magneto-plasmonic TbCo-based architectures.
Since the first experimental observation of all-optical switching phenomena, intensive research has been focused on finding suitable magnetic systems that can be integrated as storage elements within spintronic devices and whose magnetization can be controlled through ultra-short single laser pulses. We report here atomistic spin simulations of all-optical switching in multilayered structures alternating n monolayers of Tb and m monolayers of Co. By using a two temperature model, we numerically calculate the thermal variation of the magnetization of each sublattice as well as the magnetization dynamics of [Tbn/Com] multilayers upon incidence of a single laser pulse. In particular, the condition to observe thermally-induced magnetization switching is investigated upon varying systematically both the composition of the sample (n,m) and the laser fluence. The samples with one monolayer of Tb as [Tb1/Co2] and [Tb1/Co3] are showing thermally induced magnetization switching above a fluence threshold. The reversal mechanism is mediated by the residual magnetization of the Tb lattice while the Co is fully demagnetized in agreement with the models developed for ferrimagnetic alloys. The switching is however not fully deterministic but the error rate can be tuned by the damping parameter. Increasing the number of monolayers the switching becomes completely stochastic. The intermixing at the Tb/Co interfaces appears to be a promising way to reduce the stochasticity. These results predict for the first time the possibility of TIMS in [Tb/Co] multilayers and suggest the occurrence of sub-picosecond magnetization reversal using single laser pulses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا