Levy flights for light have been demonstrated in disordered systems with and without optical gain, and remained unobserved in ordered ones. In the present letter, we investigate, numerically and experimentally, Levy flights for light in ordered systems due to an ordered (conventional) laser. The statistical analysis was performed on the intensity fluctuations of the output spectra upon repeated identical experimental realizations. We found out that the optical gain and the mirrors reflectivity are critical parameters governing the fluctuation statistics. We identified Levy regimes for gain around the laser threshold, and Gaussian-Levy-Gaussian crossovers were unveiling when increasing the gain from below to above the threshold. The experimental results were corroborated by Monte Carlo simulations, and the fluctuations were associated to a Langevin noise source that takes into account the randomness of the spontaneous emission, which seeds the laser emission and can cause large fluctuations of the output spectra from shot-to-shot under identical experimental realizations.