Do you want to publish a course? Click here

Instrumental Variables: To Strengthen or Not to Strengthen?

270   0   0.0 ( 0 )
 Added by Siyu Heng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Instrumental variables (IVs) are extensively used to estimate treatment effects when the treatment and outcome are confounded by unmeasured confounders; however, weak IVs are often encountered in empirical studies and may cause problems. Many studies have considered building a stronger IV from the original, possibly weak, IV in the design stage of a matched study at the cost of not using some of the samples in the analysis. It is widely accepted that strengthening an IV tends to render nonparametric tests more powerful and will increase the power of sensitivity analyses in large samples. In this article, we re-evaluate this conventional wisdom to bring new insights into this topic. We consider matched observational studies from three perspectives. First, we evaluate the trade-off between IV strength and sample size on nonparametric tests assuming the IV is valid and exhibit conditions under which strengthening an IV increases power and conversely conditions under which it decreases power. Second, we derive a necessary condition for a valid sensitivity analysis model with continuous doses. We show that the $Gamma$ sensitivity analysis model, which has been previously used to come to the conclusion that strengthening an IV increases the power of sensitivity analyses in large samples, does not apply to the continuous IV setting and thus this previously reached conclusion may be invalid. Third, we quantify the bias of the Wald estimator with a possibly invalid IV under an oracle and leverage it to develop a valid sensitivity analysis framework; under this framework, we show that strengthening an IV may amplify or mitigate the bias of the estimator, and may or may not increase the power of sensitivity analyses. We also discuss how to better adjust for the observed covariates when building an IV in matched studies.



rate research

Read More

Instrumental variable (IV) analyses are becoming common in health services research and epidemiology. IV analyses can be used both to analyze randomized trials with noncompliance and as a form of natural experiment. In these analyses, investigators often adopt a monotonicity assumption, which implies that the relevant effect only applies to a subset of the study population known as compliers. Since the estimated effect is not the average treatment effect of the study population, it is important to compare the characteristics of compliers and non-compliers. Profiling compliers and non-compliers is necessary to understand what subpopulation the researcher is making inferences about, and an important first step in evaluating the external validity (or lack thereof) of the IV estimate for compliers. Here, we discuss the assumptions necessary for profiling, which are weaker than the assumptions necessary for identifying the local average treatment effect if the instrument is randomly assigned. We then outline a simple and general method to characterize compliers and noncompliers using baseline covariates. Next, we extend current methods by deriving standard errors for these estimates. We demonstrate these methods using an IV known as tendency to operate (TTO) from health services research.
Standard weak measurement (SWM) has been proved to be a useful ingredient for measuring small longitudinal phase shifts. [Phys. Rev. Lett. 111, 033604 (2013)]. In this letter, we show that with specfic pre-coupling and postselection, destructive interference can be observed for the two conjugated variables, i.e. time and frequency, of the meter state. Using a broad band source, this conjugated destructive interference (CDI) can be observed in a regime approximately 1 attosecond, while the related spectral shift reaches hundreds of THz. This extreme sensitivity can be used to detect tiny longitudinal phase perturbation. Combined with a frequency-domain analysis, conjugated destructive interference weak measurement (CDIWM) is proved to outperform SWM by two orders of magnitude.
Transformer is an attention-based neural network, which consists of two sublayers, namely, Self-Attention Network (SAN) and Feed-Forward Network (FFN). Existing research explores to enhance the two sublayers separately to improve the capability of Transformer for text representation. In this paper, we present a novel understanding of SAN and FFN as Mask Attention Networks (MANs) and show that they are two special cases of MANs with static mask matrices. However, their static mask matrices limit the capability for localness modeling in text representation learning. We therefore introduce a new layer named dynamic mask attention network (DMAN) with a learnable mask matrix which is able to model localness adaptively. To incorporate advantages of DMAN, SAN, and FFN, we propose a sequential layered structure to combine the three types of layers. Extensive experiments on various tasks, including neural machine translation and text summarization demonstrate that our model outperforms the original Transformer.
We present a machine learning approach for estimating galaxy cluster masses, trained using both Chandra and eROSITA mock X-ray observations of 2,041 clusters from the Magneticum simulations. We train a random forest regressor, an ensemble learning method based on decision tree regression, to predict cluster masses using an input feature set. The feature set uses core-excised X-ray luminosity and a variety of morphological parameters, including surface brightness concentration, smoothness, asymmetry, power ratios, and ellipticity. The regressor is cross-validated and calibrated on a training sample of 1,615 clusters (80% of sample), and then results are reported as applied to a test sample of 426 clusters (20% of sample). This procedure is performed for two different mock observation series in an effort to bracket the potential enhancement in mass predictions that can be made possible by including dynamical state information. The first series is computed from idealized Chandra-like mock cluster observations, with high spatial resolution, long exposure time (1 Ms), and the absence of background. The second series is computed from realistic-condition eROSITA mocks with lower spatial resolution, short exposures (2 ks), instrument effects, and background photons modeled. We report a 20% reduction in the mass estimation scatter when either series is used in our random forest model compared to a standard regression model that only employs core-excised luminosity. The morphological parameters that hold the highest feature importance are smoothness, asymmetry, and surface brightness concentration. Hence, these parameters, which encode the dynamical state of the cluster, can be used to make more accurate predictions of cluster masses in upcoming surveys, offering a crucial step forward for cosmological analyses.
110 - Rui Fan , Ke Xu , Jichang Zhao 2020
Increasing evidence suggests that, similar to face-to-face communications, human emotions also spread in online social media. However, the mechanisms underlying this emotion contagion, for example, whether different feelings spread in unlikely ways or how the spread of emotions relates to the social network, is rarely investigated. Indeed, because of high costs and spatio-temporal limitations, explorations of this topic are challenging using conventional questionnaires or controlled experiments. Because they are collection points for natural affective responses of massive individuals, online social media sites offer an ideal proxy for tackling this issue from the perspective of computational social science. In this paper, based on the analysis of millions of tweets in Weibo, surprisingly, we find that anger travels easily along weaker ties than joy, meaning that it can infiltrate different communities and break free of local traps because strangers share such content more often. Through a simple diffusion model, we reveal that weaker ties speed up anger by applying both propagation velocity and coverage metrics. To the best of our knowledge, this is the first time that quantitative long-term evidence has been presented that reveals a difference in the mechanism by which joy and anger are disseminated. With the extensive proliferation of weak ties in booming social media, our results imply that the contagion of anger could be profoundly strengthened to globalize its negative impact.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا