No Arabic abstract
We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and leverage additional unlabeled data from LibriVox through pseudo-labeling. We show that while Transformer-based acoustic models have superior performance with the supervised dataset alone, semi-supervision improves all models across architectures and loss functions and bridges much of the performance gaps between them. In doing so, we reach a new state-of-the-art for end-to-end acoustic models decoded with an external language model in the standard supervised learning setting, and a new absolute state-of-the-art with semi-supervised training. Finally, we study the effect of leveraging different amounts of unlabeled audio, propose several ways of evaluating the characteristics of unlabeled audio which improve acoustic modeling, and show that acoustic models trained with more audio rely less on external language models.
While deep learning based end-to-end automatic speech recognition (ASR) systems have greatly simplified modeling pipelines, they suffer from the data sparsity issue. In this work, we propose a self-training method with an end-to-end system for semi-supervised ASR. Starting from a Connectionist Temporal Classification (CTC) system trained on the supervised data, we iteratively generate pseudo-labels on a mini-batch of unsupervised utterances with the current model, and use the pseudo-labels to augment the supervised data for immediate model update. Our method retains the simplicity of end-to-end ASR systems, and can be seen as performing alternating optimization over a well-defined learning objective. We also perform empirical investigations of our method, regarding the effect of data augmentation, decoding beamsize for pseudo-label generation, and freshness of pseudo-labels. On a commonly used semi-supervised ASR setting with the WSJ corpus, our method gives 14.4% relative WER improvement over a carefully-trained base system with data augmentation, reducing the performance gap between the base system and the oracle system by 50%.
We present a new end-to-end architecture for automatic speech recognition (ASR) that can be trained using emph{symbolic} input in addition to the traditional acoustic input. This architecture utilizes two separate encoders: one for acoustic input and another for symbolic input, both sharing the attention and decoder parameters. We call this architecture a multi-modal data augmentation network (MMDA), as it can support multi-modal (acoustic and symbolic) input and enables seamless mixing of large text datasets with significantly smaller transcribed speech corpora during training. We study different ways of transforming large text corpora into a symbolic form suitable for training our MMDA network. Our best MMDA setup obtains small improvements on character error rate (CER), and as much as 7-10% relative word error rate (WER) improvement over a baseline both with and without an external language model.
Building ASR models across many languages is a challenging multi-task learning problem due to large variations and heavily unbalanced data. Existing work has shown positive transfer from high resource to low resource languages. However, degradations on high resource languages are commonly observed due to interference from the heterogeneous multilingual data and reduction in per-language capacity. We conduct a capacity study on a 15-language task, with the amount of data per language varying from 7.6K to 53.5K hours. We adopt GShard [1] to efficiently scale up to 10B parameters. Empirically, we find that (1) scaling the number of model parameters is an effective way to solve the capacity bottleneck - our 500M-param model already outperforms monolingual baselines and scaling it to 1B and 10B brought further quality gains; (2) larger models are not only more data efficient, but also more efficient in terms of training cost as measured in TPU days - the 1B-param model reaches the same accuracy at 34% of training time as the 500M-param model; (3) given a fixed capacity budget, adding depth works better than width and large encoders do better than large decoders; (4) with continuous training, they can be adapted to new languages and domains.
We propose a new end-to-end neural diarization (EEND) system that is based on Conformer, a recently proposed neural architecture that combines convolutional mappings and Transformer to model both local and global dependencies in speech. We first show that data augmentation and convolutional subsampling layers enhance the original self-attentive EEND in the Transformer-based EEND, and then Conformer gives an additional gain over the Transformer-based EEND. However, we notice that the Conformer-based EEND does not generalize as well from simulated to real conversation data as the Transformer-based model. This leads us to quantify the mismatch between simulated data and real speaker behavior in terms of temporal statistics reflecting turn-taking between speakers, and investigate its correlation with diarization error. By mixing simulated and real data in EEND training, we mitigate the mismatch further, with Conformer-based EEND achieving 24% error reduction over the baseline SA-EEND system, and 10% improvement over the best augmented Transformer-based system, on two-speaker CALLHOME data.
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained completely from scratch to translate unseen sentences. Our method consists of a pyramidal-bidirectional recurrent network combined with a convolutional network to output sentence-level spectrograms in the target language. Empirically, our model achieves competitive performance with state-of-the-art methods on multiple languages and can generalize to unseen speakers.